PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2952.
Published online 2009 October 31. doi:  10.1107/S1600536809045139
PMCID: PMC2971288

1,1,4,4-Tetra­methyl­piperazinediium dibromide

Abstract

A small quantity of the title compound, C8H20N2 2+·2Br, was formed as a by-product in a reaction between a diamine and an alkyl bromide. The asymmetric unit contains half of a centrosymmetric dication and a bromide anion. In the crystal, weak inter­molecular C—H(...)Br hydrogen bonds consolidate the crystal packing.

Related literature

For a possible synthetic route, see Creighton & Taylor (1987 [triangle]). For related structures, see; Linden et al. (1999 [triangle], 2002 [triangle]); Guo et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2952-scheme1.jpg

Experimental

Crystal data

  • C8H20N2 2+·2Br
  • M r = 304.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2952-efi3.jpg
  • a = 5.8769 (12) Å
  • b = 8.4584 (17) Å
  • c = 11.200 (2) Å
  • β = 92.79 (3)°
  • V = 556.07 (19) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 7.25 mm−1
  • T = 123 K
  • 0.24 × 0.16 × 0.16 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.296, T max = 0.390
  • 5032 measured reflections
  • 1370 independent reflections
  • 1223 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.061
  • S = 1.11
  • 1370 reflections
  • 95 parameters
  • All H-atom parameters refined
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: COLLECT (Nonius, 1999 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]; Otwinowski et al., 2003 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809045139/cv2642sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045139/cv2642Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Inorganic Materials Chemistry Graduate Program and the Magnus Ehrnrooth Foundation for financial support.

supplementary crystallographic information

Comment

Low quantity of the title compound (Fig. 1) was formed as a byproduct in a synthesis between a tetramethylethylenediamine (TMEDA) and ethoxyethylbromide. Most probably residues of dibromoethane existed as an impurity on either of the starting materials as it is known that piperazinium can be formed by reacting TMEDA and 1,2-dibromoethane. The compound has been recrystallized from acetonitrile/methanol solvent and its crystal structure is reported here.

The asymmetric unit consists of one anion and half a cation. The C—H···Br distances vary from 2.826 (30) to 2.924 (20) Å. In the crystal, cations are packed columnary along a axis forming at the same time layers along b axis. The bromide anions are analogously packed between the cation layers. The structure is stabilized by weak intermolecular C—H···Br interactions. Cation conformation of this compound is similar to those previously reported tetraiodidocadmate and pentabromothallate salts.

Experimental

The compound was a byproduct from a reaction between tetramethylenediamine and ethoxyethylbromide. Few crystals suitable for a single-crystal structure determination recrystallized from an acetonitrile-methanol solution.

Refinement

All H atoms were located from the difference map and refined isotropically.

Figures

Fig. 1.
Left: The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering [symmetry code: (i) -x + 1, y + 1/2, -z + 3/2]. Right: Spacefill presentation of location of eight bromides around a single dication. Six of ...

Crystal data

C8H20N22+·2BrF(000) = 304
Mr = 304.08Dx = 1.816 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8769 (12) ÅCell parameters from 3094 reflections
b = 8.4584 (17) Åθ = 0.4–28.3°
c = 11.200 (2) ŵ = 7.25 mm1
β = 92.79 (3)°T = 123 K
V = 556.07 (19) Å3Block, colourless
Z = 20.24 × 0.16 × 0.16 mm

Data collection

Bruker Kappa APEXII diffractometer1370 independent reflections
Radiation source: fine-focus sealed tube1223 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 28.2°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −6→7
Tmin = 0.296, Tmax = 0.390k = −11→10
5032 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.061All H-atom parameters refined
S = 1.11w = 1/[σ2(Fo2) + (0.0256P)2 + 0.322P] where P = (Fo2 + 2Fc2)/3
1370 reflections(Δ/σ)max = 0.001
95 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.70 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.5241 (3)0.3260 (2)0.48286 (16)0.0111 (4)
C20.6413 (5)0.1983 (3)0.4148 (2)0.0146 (5)
C30.3697 (5)0.2474 (3)0.5693 (2)0.0155 (5)
C40.3920 (4)0.4292 (3)0.3948 (2)0.0120 (4)
C50.2945 (4)0.5749 (3)0.4538 (2)0.0117 (5)
Br10.89763 (4)0.01387 (3)0.702200 (19)0.01391 (10)
H2A0.524 (5)0.137 (3)0.374 (2)0.017 (7)*
H2B0.720 (5)0.138 (3)0.473 (2)0.013 (7)*
H2C0.733 (4)0.252 (3)0.356 (2)0.011 (6)*
H3A0.462 (5)0.186 (3)0.620 (2)0.019 (7)*
H3B0.292 (5)0.333 (3)0.614 (2)0.020 (7)*
H3C0.270 (5)0.190 (3)0.524 (3)0.021 (8)*
H4A0.272 (4)0.370 (3)0.360 (2)0.010 (6)*
H4B0.491 (5)0.456 (3)0.331 (2)0.010 (6)*
H5A0.182 (5)0.546 (3)0.519 (2)0.013 (7)*
H5B0.220 (4)0.637 (3)0.394 (2)0.005 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0101 (10)0.0108 (9)0.0122 (9)−0.0002 (7)0.0004 (7)−0.0004 (7)
C20.0186 (14)0.0101 (11)0.0149 (11)0.0019 (10)0.0000 (10)−0.0024 (9)
C30.0157 (14)0.0142 (12)0.0168 (12)−0.0011 (10)0.0034 (10)0.0033 (9)
C40.0128 (12)0.0105 (10)0.0122 (10)0.0004 (9)−0.0029 (9)−0.0010 (9)
C50.0116 (12)0.0095 (10)0.0137 (11)0.0019 (9)−0.0034 (9)−0.0011 (9)
Br10.01243 (16)0.01658 (15)0.01261 (14)0.00082 (9)−0.00030 (9)−0.00037 (8)

Geometric parameters (Å, °)

N1—C41.505 (3)C3—H3B1.01 (3)
N1—C5i1.506 (3)C3—H3C0.90 (3)
N1—C21.507 (3)C4—C51.524 (3)
N1—C31.512 (3)C4—H4A0.93 (3)
C2—H2A0.96 (3)C4—H4B0.97 (3)
C2—H2B0.93 (3)C5—N1i1.506 (3)
C2—H2C0.99 (3)C5—H5A1.04 (3)
C3—H3A0.93 (3)C5—H5B0.94 (2)
C4—N1—C5i108.49 (18)N1—C3—H3C105.5 (18)
C4—N1—C2108.52 (17)H3A—C3—H3C113 (2)
C5i—N1—C2107.85 (18)H3B—C3—H3C112 (2)
C4—N1—C3111.58 (19)N1—C4—C5112.19 (18)
C5i—N1—C3112.09 (17)N1—C4—H4A108.5 (16)
C2—N1—C3108.19 (18)C5—C4—H4A108.6 (16)
N1—C2—H2A107.1 (16)N1—C4—H4B108.0 (16)
N1—C2—H2B105.1 (16)C5—C4—H4B112.5 (15)
H2A—C2—H2B111 (2)H4A—C4—H4B107 (2)
N1—C2—H2C106.7 (15)N1i—C5—C4112.47 (19)
H2A—C2—H2C109 (2)N1i—C5—H5A104.9 (15)
H2B—C2—H2C117 (2)C4—C5—H5A112.6 (15)
N1—C3—H3A106.8 (18)N1i—C5—H5B108.7 (15)
N1—C3—H3B107.6 (15)C4—C5—H5B108.2 (14)
H3A—C3—H3B112 (2)H5A—C5—H5B110 (2)
C5i—N1—C4—C5−55.1 (3)C3—N1—C4—C568.8 (2)
C2—N1—C4—C5−172.1 (2)N1—C4—C5—N1i57.4 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···Br1ii0.96 (3)2.88 (4)3.816 (4)165 (2)
C2—H2B···Br10.93 (3)2.92 (4)3.820 (4)163 (2)
C2—H2C···Br1iii0.98 (3)2.83 (4)3.770 (3)161 (2)
C3—H3B···Br1iv1.00 (3)2.84 (3)3.806 (4)163 (2)
C4—H4A···Br1v0.93 (3)2.92 (2)3.566 (2)127 (2)
C4—H4B···Br1iii0.97 (3)2.86 (5)3.787 (2)159 (2)

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2; (v) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2642).

References

  • Creighton, J. L. & Taylor, M. J. (1987). Can. J. Chem.65, 2526–2528.
  • Guo, H.-X., Wu, S.-Z., Cai, M.-S. & Yao, S.-S. (2007). Acta Cryst. E63, m2747.
  • Linden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122–128.
  • Linden, A., Petridis, A. & James, B. D. (2002). Acta Cryst. C58, m53–m55. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Nonius (1999). COLLECT Nonius BV, The Netherlands.
  • Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography