PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1275.
Published online 2009 October 3. doi:  10.1107/S1600536809039233
PMCID: PMC2971283

Bis(2-imino­methyl-5-methoxy­phenolato)nickel(II)

Abstract

The title compound, [Ni(C8H8NO2)2], is a centrosymmetric mononuclear nickel(II) complex. The NiII ion, lying on an inversion centre, is four-coordinated in a square-planar geometry by two phenolate O and two imine N atoms from two symmetry-related 2-imino­methyl-5-methoxy­phenolate ligands. In the crystal, mol­ecules are linked into corrugated layers parallel to (100) by N—H(...)O hydrogen bonds.

Related literature

For related structures, see: Angulo et al. (2001 [triangle]); Dey et al. (2004 [triangle]); Edison et al. (2004 [triangle]); Ramadevi et al. (2005 [triangle]); Suh et al. (1996 [triangle]); Tang (2009 [triangle]); Kamenar et al. (1990 [triangle]); Costes et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1275-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H8NO2)2]
  • M r = 359.02
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1275-efi1.jpg
  • a = 7.5704 (16) Å
  • b = 11.331 (2) Å
  • c = 17.227 (4) Å
  • V = 1477.7 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 298 K
  • 0.18 × 0.17 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.795, T max = 0.805
  • 7939 measured reflections
  • 1620 independent reflections
  • 1122 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.083
  • S = 1.01
  • 1620 reflections
  • 110 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039233/ci2923sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039233/ci2923Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Jiaying University research fund is gratefully acknowledged.

supplementary crystallographic information

Comment

Nickel(II) complexes play an important role in both bioinorganic chemistry and coordination chemistry (Suh et al., 1996; Dey et al., 2004; Angulo et al., 2001; Ramadevi et al., 2005; Edison et al., 2004). Recently, the author has reported a nickel(II) complex (Tang, 2009). As a continuation of this work, the title mononuclear nickel(II) complex (Fig. 1), is reported in this paper.

The title complex is a centrosymmetric mononuclear nickel(II) complex. The NiII ion, lying on the inversion centre, is four-coordinated in a square-planar geometry, with two phenolate O and two imine N atoms from two 2-(iminomethyl)-5-methoxyphenolate ligands. The coordination bond lengths (Table 1) are comparable to those observed in related complexes (Kamenar et al., 1990; Costes et al., 1994).

In the crytal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 2), forming zigzag layers parallel to the (100) [Fig.2].

Experimental

4-Methoxy-2-hydroxybenzaldehyde (0.2 mmol, 30.5 mg) and nickel(II) nitrate hexahydrate (0.1 mmol, 29.1 mg) were mixed in a methanol solution (20 ml) which contains small quantity of ammonia. The mixture was stirred at room temperature for 30 min to give a red solution. The solution was allowed to stand in air for 8 d, yielding red block-shaped crystals of the title complex. The absorption band indicative of the C═N double bond formation in the IR spectrum of the complex is at 1617 cm-1.

Refinement

Atom H1 was located in a difference Fourier map and refined isotropically, with N-H distance restrained to 0.90 (1) Å and Uiso set at 0.08 Å2. Other H atoms were constrained to ideal geometries, with C-H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C8).

Figures

Fig. 1.
The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are at the symmetry position (2-x, -y, 1-z).
Fig. 2.
Packing diagram, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ni(C8H8NO2)2]F(000) = 744
Mr = 359.02Dx = 1.614 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1894 reflections
a = 7.5704 (16) Åθ = 2.3–26.2°
b = 11.331 (2) ŵ = 1.34 mm1
c = 17.227 (4) ÅT = 298 K
V = 1477.7 (5) Å3Block, red
Z = 40.18 × 0.17 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer1620 independent reflections
Radiation source: fine-focus sealed tube1122 reflections with I > 2σ(I)
graphiteRint = 0.028
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→6
Tmin = 0.795, Tmax = 0.805k = −11→14
7939 measured reflectionsl = −21→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0414P)2 + 0.384P] where P = (Fo2 + 2Fc2)/3
1620 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.00000.00000.50000.03483 (14)
O10.98642 (18)0.00398 (11)0.39332 (9)0.0407 (4)
O20.8757 (2)0.14990 (13)0.13928 (8)0.0486 (4)
N10.9039 (3)0.14925 (16)0.51213 (9)0.0422 (4)
C10.8581 (3)0.19740 (17)0.37798 (11)0.0366 (5)
C20.9275 (3)0.08998 (17)0.34895 (11)0.0352 (4)
C30.9336 (3)0.07278 (17)0.26800 (11)0.0369 (5)
H30.97830.00260.24800.044*
C40.8738 (3)0.15895 (18)0.21830 (11)0.0380 (5)
C50.8038 (3)0.26481 (18)0.24643 (12)0.0457 (5)
H50.76340.32240.21230.055*
C60.7956 (3)0.28230 (19)0.32452 (12)0.0426 (5)
H60.74730.35220.34330.051*
C70.8489 (3)0.22017 (18)0.45884 (12)0.0423 (5)
H70.79970.29150.47460.051*
C80.9403 (4)0.0435 (2)0.10637 (13)0.0547 (6)
H8A1.06250.03380.11980.082*
H8B0.92860.04670.05090.082*
H8C0.8736−0.02200.12610.082*
H10.897 (3)0.176 (2)0.5612 (8)0.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0469 (2)0.0262 (2)0.0314 (2)0.00123 (15)−0.00135 (15)−0.00138 (14)
O10.0622 (10)0.0268 (8)0.0330 (7)0.0072 (6)−0.0022 (6)0.0002 (5)
O20.0658 (10)0.0432 (9)0.0367 (8)0.0046 (7)−0.0027 (7)0.0072 (7)
N10.0578 (12)0.0320 (10)0.0367 (10)0.0037 (9)−0.0006 (8)−0.0044 (7)
C10.0413 (11)0.0290 (10)0.0395 (11)−0.0004 (8)−0.0032 (8)−0.0019 (9)
C20.0384 (11)0.0289 (11)0.0382 (11)−0.0038 (9)−0.0029 (8)0.0015 (8)
C30.0442 (11)0.0284 (10)0.0381 (11)0.0001 (9)0.0005 (9)−0.0001 (8)
C40.0402 (12)0.0361 (11)0.0378 (11)−0.0045 (9)−0.0036 (8)0.0045 (9)
C50.0532 (12)0.0351 (12)0.0488 (13)0.0023 (10)−0.0072 (10)0.0107 (10)
C60.0499 (13)0.0279 (11)0.0500 (13)0.0058 (9)−0.0032 (10)0.0007 (10)
C70.0516 (14)0.0281 (11)0.0472 (13)0.0038 (10)−0.0018 (10)−0.0050 (9)
C80.0743 (16)0.0515 (14)0.0382 (12)0.0055 (13)−0.0010 (11)0.0029 (11)

Geometric parameters (Å, °)

Ni1—O1i1.8411 (16)C2—C31.409 (3)
Ni1—O11.8411 (16)C3—C41.375 (3)
Ni1—N1i1.8529 (18)C3—H30.93
Ni1—N11.8529 (18)C4—C51.398 (3)
O1—C21.316 (2)C5—C61.361 (3)
O2—C41.365 (2)C5—H50.93
O2—C81.419 (3)C6—H60.93
N1—C71.289 (3)C7—H70.93
N1—H10.901 (10)C8—H8A0.96
C1—C61.413 (3)C8—H8B0.96
C1—C21.417 (3)C8—H8C0.96
C1—C71.418 (3)
O1i—Ni1—O1180C2—C3—H3119.8
O1i—Ni1—N1i93.92 (6)O2—C4—C3124.35 (19)
O1—Ni1—N1i86.08 (6)O2—C4—C5114.44 (18)
O1i—Ni1—N186.08 (6)C3—C4—C5121.21 (19)
O1—Ni1—N193.92 (6)C6—C5—C4119.00 (19)
N1i—Ni1—N1180C6—C5—H5120.5
C2—O1—Ni1128.08 (13)C4—C5—H5120.5
C4—O2—C8117.75 (16)C5—C6—C1121.97 (19)
C7—N1—Ni1127.97 (15)C5—C6—H6119.0
C7—N1—H1116.0 (17)C1—C6—H6119.0
Ni1—N1—H1116.0 (17)N1—C7—C1124.78 (19)
C6—C1—C2118.63 (18)N1—C7—H7117.6
C6—C1—C7119.98 (18)C1—C7—H7117.6
C2—C1—C7121.40 (18)O2—C8—H8A109.5
O1—C2—C3117.48 (18)O2—C8—H8B109.5
O1—C2—C1123.82 (17)H8A—C8—H8B109.5
C3—C2—C1118.69 (18)O2—C8—H8C109.5
C4—C3—C2120.50 (19)H8A—C8—H8C109.5
C4—C3—H3119.8H8B—C8—H8C109.5

Symmetry codes: (i) −x+2, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.90 (1)2.39 (2)3.166 (2)144 (2)

Symmetry codes: (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2923).

References

  • Angulo, I. M., Bouwman, E., Lutz, M., Mul, W. P. & Spek, A. L. (2001). Inorg. Chem.40, 2073–2082. [PubMed]
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Costes, J.-P., Dahan, F. & Laurent, J.-P. (1994). Inorg. Chem.33, 2738–2742.
  • Dey, S. K., Mondal, N., El Fallah, M. S., Vicente, R., Escuer, A., Solans, X., Font-Bardia, M., Matsushita, T., Gramlich, V. & Mitra, S. (2004). Inorg. Chem.43, 2427–2434. [PubMed]
  • Edison, S. E., Krause Bauer, J. A. & Baldwin, M. J. (2004). Acta Cryst. E60, m1930–m1932.
  • Kamenar, B., Kaitner, B., Stefanović, A. & Waters, T. N. (1990). Acta Cryst. C46, 1627–1631.
  • Ramadevi, P., Kumaresan, S. & Muir, K. W. (2005). Acta Cryst. E61, m1749–m1751.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, M. P., Oh, K. Y., Lee, J. W. & Bae, Y. Y. (1996). J. Am. Chem. Soc.118, 777–783.
  • Tang, C. (2009). Acta Cryst. E65, m317. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography