PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1282–m1283.
Published online 2009 October 3. doi:  10.1107/S1600536809039154
PMCID: PMC2971279

Aqua­(2-hydr­oxy-5-sulfonatobenzoato-κO 1)bis­(2-phenyl-1H-1,3,7,8-tetra­aza­cyclo­penta­[l]phenanthrene-κ2 N 7,N 8)zinc(II)

Abstract

In the title compound, [Zn(C7H4O6S)(C19H12N4)2(H2O)], the ZnII ion is coordinated by two N,N′-bidentate 2-phenyl-1H-1,3,7,8-tetra­azacyclo­penta­[l]phenanthrene ligands, one O-monodentate 5-sulfosalicylate dianion and a water mol­ecule. This results in a distorted cis-ZnO2N4 octa­hedral coordination geometry for the metal ion. In the crystal, mol­ecules are expanded into a three-dimensional supra­molecular motif via O—H(...)O, O—H(...)N and N—H(...)(O,S) hydrogen bonds. In addition, π–π stacking inter­actions between the aromatic rings of the polycyclic ligands consolidate the sturcture [shortest centroid–centroid distance = 3.501 (2) Å].

Related literature

For related structures, see: Che et al. (2008 [triangle]); Li et al. (2009 [triangle]); Liu et al. (2009 [triangle]). For the synthesis of the ligand, see: Steck & Day (1943 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1282-scheme1.jpg

Experimental

Crystal data

  • [Zn(C7H4O6S)(C19H12N4)2(H2O)]
  • M r = 892.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1282-efi1.jpg
  • a = 8.3257 (8) Å
  • b = 25.926 (2) Å
  • c = 18.3271 (13) Å
  • β = 101.259 (8)°
  • V = 3879.8 (6) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 1.94 mm−1
  • T = 292 K
  • 0.27 × 0.26 × 0.23 mm

Data collection

  • Oxford Diffraction Gemini R Ultra diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006 [triangle]) T min = 0.621, T max = 0.640
  • 15767 measured reflections
  • 6808 independent reflections
  • 4337 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.132
  • S = 0.97
  • 6808 reflections
  • 575 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039154/hb5120sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039154/hb5120Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Jiangsu University for supporting this work.

supplementary crystallographic information

Comment

1,10-phenanthroline (phen) and its derivatives has been widely used to build supramolecular architectures owing to their excellent coordinating ability and large conjugated system (Che et al., 2008; Li et al., 2009). Whenas, building blocks derived from the appropriate modification of phen, such as 2-phenyl-1H-1,3,7,8-tetra-azacyclopenta[l]phenanthrene (L) have received considerably less attention (Liu et al., 2009). Hereby, we have prepared the title compound, namely, [Zn(C19H12N4)2(C7H4O6S)H2O] or [Zn(L)2 (HSSA)H2O] (I), based on L and 5-sulfosalicylic acid (H3SSA) ligands.

In the compound (I), each Zn atom is six-coordinated by four N atoms from two L ligands, one O atom from a HSSA ligand and one water molecule (Fig. 1). The Zn—O distances range from 2.080 (3) Å to 2.196 (3) Å and the Zn—N lengths from 2.120 (3) to 2.184 (3) Å (Table 1). The N1, N5, N6, O1W atoms comprise the basal plane, while the O1 and N2 atoms occupy the axial position. In (I), –CO2H and –SO3H groups are deprotonated, but –OH groups are neutral. The carboxylate group of a HSSA ligand displays monodentate bridging coordination mode, whenas –OH and –SO3- groups are uncoordinated.

The neighboring mononuclear ZnII units interact by various hydrogen bonds, leading to a three-dimensional supramolecular structure (Fig. 2): (a) N—H···O or N—H···S hydrogen bonds between imidazole rings donors and the sulfonic groups of the HSSA ligands [N4···O6i: 2.883 (4) Å; N4···S1i: 3.854 (4) Å; N8···O4ii: 2.794 (5) Å; N8···S1ii: 3.793 (4) Å, symmetry code: (i) -x + 3/2, y - 1/2, -z + 3/2, (ii) -x + 1, -y + 1, -z + 1]. (b) O—H···O or O—H···N hydrogen bonds involving the coordinated water molecule OW1 and the O2, N7ii atoms [O1W···O2: 2.712 (4) Å; O1W···N7iii: 2.877 (4) Å, symmetry code: (iii) x + 1/2, -y + 1/2, z + 1/2]. (c) Intramolecular O—H···O hydrogen bonds involving hydroxy oxygen atom of HSSA anion and carboxylate O2 atom [O3···O2: 2.547 (4) Å] (Table 2). In addition, π-π stacking interactions between L ligands further intensify the current architectures with a shortest stacking distance of 3.501 (2) Å.

Experimental

The L ligand was synthesized according to the literature method (Steck & Day, 1943). A mixture of L, H3SSA, Zn(NO3)2 and water in the mole ratio 1:1:1:4000 was placed in a 25 ml Teflon-lined autoclave and heated for 4 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow blocks of (I) were obtained, which were washed with H2O and dried in air (62% yield based on Zn).

Refinement

All H atoms on C atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). The hydrogen atoms of water molecules were located from difference Fourier maps and their positions and Uiso values were refined freely.

Figures

Fig. 1.
View of the local coordination of compound (I) with displacement ellipsoids drawn at the 30% probability level. (arbitrary spheres for the H atoms).
Fig. 2.
View of three-dimensional superamolecular structure of (I) built up via hydrogen bonds and π-π interactions. Most H atoms have been omitted.

Crystal data

[Zn(C7H4O6S)(C19H12N4)2(H2O)]F(000) = 1832
Mr = 892.20Dx = 1.527 Mg m3Dm = 1.527 Mg m3Dm measured by not measured
Monoclinic, P21/nCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ynCell parameters from 3619 reflections
a = 8.3257 (8) Åθ = 4.9–67.0°
b = 25.926 (2) ŵ = 1.94 mm1
c = 18.3271 (13) ÅT = 292 K
β = 101.259 (8)°Block, yellow
V = 3879.8 (6) Å30.27 × 0.26 × 0.23 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra diffractometer6808 independent reflections
Radiation source: fine-focus sealed tube4337 reflections with I > 2σ(I)
mirrorRint = 0.055
Detector resolution: 10.2375 pixels mm-1θmax = 67.1°, θmin = 4.9°
ω scansh = −9→9
Absorption correction: multi-scan (Crys Alis RED; Oxford Diffraction, 2006)k = −30→30
Tmin = 0.621, Tmax = 0.640l = −21→19
15767 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.97w = 1/[σ2(Fo2) + (0.0673P)2] where P = (Fo2 + 2Fc2)/3
6808 reflections(Δ/σ)max = 0.001
575 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8928 (5)0.36143 (15)0.8278 (2)0.0515 (10)
H10.81580.38780.81890.062*
C21.0106 (6)0.36325 (16)0.8925 (2)0.0577 (11)
H21.01480.39080.92520.069*
C31.1200 (5)0.32385 (16)0.9071 (2)0.0542 (11)
H31.19660.32350.95150.065*
C41.1179 (5)0.28381 (14)0.85566 (19)0.0413 (8)
C51.2235 (5)0.24000 (14)0.86501 (19)0.0440 (9)
C61.2180 (5)0.20368 (14)0.80857 (19)0.0419 (8)
C71.1048 (4)0.20682 (14)0.73901 (18)0.0399 (8)
C81.0964 (5)0.17231 (15)0.6789 (2)0.0465 (9)
H81.17030.14510.68170.056*
C90.9786 (5)0.17933 (16)0.6169 (2)0.0517 (10)
H90.97340.15770.57610.062*
C100.8664 (5)0.21915 (15)0.6151 (2)0.0496 (10)
H100.78500.22300.57280.059*
C110.9915 (5)0.24714 (13)0.73182 (18)0.0399 (8)
C120.9970 (5)0.28631 (14)0.79011 (18)0.0408 (8)
C131.3962 (5)0.18131 (14)0.90865 (19)0.0433 (9)
C141.5168 (5)0.15014 (14)0.9583 (2)0.0446 (9)
C151.5650 (5)0.16544 (16)1.0328 (2)0.0517 (10)
H151.51980.19491.04960.062*
C161.6782 (5)0.13724 (17)1.0811 (2)0.0580 (11)
H161.71140.14821.13010.070*
C171.7434 (6)0.09257 (17)1.0573 (2)0.0600 (11)
H171.81860.07311.09040.072*
C181.6960 (5)0.07698 (16)0.9839 (2)0.0585 (11)
H181.74040.04720.96760.070*
C191.5831 (5)0.10548 (15)0.9349 (2)0.0499 (10)
H191.55130.09460.88580.060*
C200.4122 (5)0.23843 (15)0.5864 (2)0.0499 (10)
H200.41090.21840.62830.060*
C210.3110 (5)0.22443 (15)0.5196 (2)0.0515 (10)
H210.24620.19500.51680.062*
C220.3083 (5)0.25462 (14)0.4581 (2)0.0474 (9)
H220.24040.24610.41320.057*
C230.4081 (4)0.29835 (13)0.46294 (17)0.0377 (8)
C240.4131 (5)0.33440 (14)0.40410 (18)0.0402 (8)
C250.5154 (5)0.37647 (14)0.41540 (18)0.0409 (8)
C260.6232 (5)0.38829 (13)0.48406 (18)0.0397 (8)
C270.7254 (5)0.43149 (14)0.4979 (2)0.0455 (9)
H270.73120.45510.46040.055*
C280.8174 (5)0.43826 (15)0.5685 (2)0.0521 (10)
H280.88730.46640.57920.063*
C290.8042 (5)0.40256 (14)0.6231 (2)0.0469 (9)
H290.86620.40780.67050.056*
C300.6169 (4)0.35370 (13)0.54261 (18)0.0388 (8)
C310.5108 (4)0.30925 (13)0.53248 (18)0.0374 (8)
C320.3580 (5)0.37973 (15)0.30428 (19)0.0446 (9)
C330.2823 (5)0.40102 (16)0.23082 (19)0.0482 (9)
C340.1441 (6)0.37953 (18)0.1892 (2)0.0624 (12)
H340.09820.35070.20720.075*
C350.0714 (7)0.3997 (2)0.1212 (3)0.0758 (15)
H35−0.02230.38430.09380.091*
C360.1369 (7)0.4422 (2)0.0939 (3)0.0833 (16)
H360.08820.45590.04810.100*
C370.2733 (8)0.4642 (3)0.1343 (3)0.101 (2)
H370.31860.49310.11610.122*
C380.3453 (7)0.4437 (2)0.2027 (3)0.0862 (18)
H380.43850.45930.23010.103*
C390.4948 (5)0.35307 (16)0.8007 (2)0.0493 (10)
C400.4200 (5)0.40138 (15)0.82448 (19)0.0451 (9)
C410.4235 (6)0.41146 (17)0.8999 (2)0.0554 (11)
C420.3566 (6)0.45676 (17)0.9206 (2)0.0618 (12)
H420.36060.46380.97060.074*
C430.2841 (6)0.49147 (17)0.8672 (2)0.0591 (11)
H430.23750.52160.88130.071*
C440.2805 (5)0.48158 (14)0.7923 (2)0.0462 (9)
C450.3491 (5)0.43707 (14)0.77218 (19)0.0456 (9)
H450.34790.43080.72210.055*
O10.5147 (4)0.35041 (11)0.73431 (14)0.0549 (7)
O20.5356 (4)0.31814 (11)0.84891 (15)0.0637 (8)
O30.4895 (5)0.37738 (13)0.95378 (15)0.0761 (10)
H3C0.52470.35230.93470.114*
O40.2865 (4)0.52048 (11)0.66450 (15)0.0647 (8)
O50.0217 (4)0.50440 (12)0.69531 (18)0.0720 (9)
O60.1886 (4)0.57477 (10)0.75266 (16)0.0630 (8)
OW10.6019 (4)0.24205 (11)0.75763 (15)0.0530 (7)
S10.18387 (13)0.52366 (4)0.72053 (5)0.0505 (3)
N10.8838 (4)0.32410 (12)0.77783 (16)0.0455 (8)
N20.8700 (4)0.25209 (11)0.67122 (15)0.0430 (7)
N31.3373 (4)0.22601 (12)0.92645 (16)0.0470 (8)
N41.3291 (4)0.16684 (13)0.83680 (17)0.0434 (7)
N50.5096 (4)0.27879 (11)0.59281 (15)0.0414 (7)
N60.7089 (4)0.36156 (12)0.61175 (15)0.0417 (7)
N70.3145 (4)0.33662 (12)0.33373 (15)0.0423 (7)
N80.4802 (4)0.40487 (12)0.35073 (15)0.0447 (8)
Zn0.67652 (6)0.304312 (19)0.69016 (2)0.04405 (16)
H1WA0.560 (6)0.2603 (18)0.788 (2)0.085 (18)*
H1WB0.671 (4)0.2195 (13)0.776 (2)0.058 (13)*
H4B1.342 (5)0.1371 (16)0.818 (2)0.043 (11)*
H8B0.547 (6)0.434 (2)0.344 (3)0.085 (17)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.064 (3)0.042 (2)0.044 (2)0.0063 (19)−0.0015 (19)−0.0042 (17)
C20.079 (3)0.048 (2)0.041 (2)−0.002 (2)−0.002 (2)−0.0106 (17)
C30.064 (3)0.051 (2)0.038 (2)−0.003 (2)−0.0128 (18)−0.0074 (18)
C40.050 (2)0.0380 (18)0.0314 (17)−0.0051 (17)−0.0021 (15)0.0011 (15)
C50.048 (2)0.047 (2)0.0324 (18)−0.0059 (17)−0.0038 (16)0.0048 (16)
C60.045 (2)0.044 (2)0.0322 (17)−0.0035 (17)−0.0024 (15)0.0022 (15)
C70.047 (2)0.044 (2)0.0267 (16)−0.0041 (17)0.0017 (15)0.0040 (14)
C80.056 (2)0.048 (2)0.0356 (19)0.0032 (18)0.0089 (17)0.0000 (16)
C90.066 (3)0.056 (2)0.0306 (18)0.000 (2)0.0017 (18)−0.0087 (17)
C100.058 (2)0.055 (2)0.0294 (18)0.001 (2)−0.0065 (17)−0.0026 (17)
C110.047 (2)0.0413 (19)0.0286 (17)−0.0035 (17)−0.0001 (15)0.0037 (15)
C120.049 (2)0.0410 (19)0.0287 (17)−0.0045 (17)−0.0016 (15)0.0019 (14)
C130.049 (2)0.044 (2)0.0316 (18)−0.0045 (17)−0.0055 (16)0.0034 (15)
C140.045 (2)0.045 (2)0.040 (2)−0.0043 (17)0.0002 (16)0.0065 (16)
C150.061 (3)0.051 (2)0.038 (2)−0.0033 (19)−0.0032 (18)0.0024 (17)
C160.064 (3)0.066 (3)0.038 (2)−0.004 (2)−0.0071 (19)0.0076 (19)
C170.059 (3)0.062 (3)0.051 (2)0.003 (2)−0.007 (2)0.017 (2)
C180.062 (3)0.047 (2)0.063 (3)0.001 (2)0.003 (2)0.009 (2)
C190.053 (2)0.046 (2)0.047 (2)−0.0073 (18)−0.0001 (18)0.0042 (18)
C200.058 (2)0.049 (2)0.039 (2)−0.0043 (19)−0.0012 (18)0.0097 (17)
C210.063 (3)0.046 (2)0.041 (2)−0.0081 (19)−0.0027 (18)0.0044 (17)
C220.056 (2)0.045 (2)0.0347 (19)−0.0025 (18)−0.0071 (17)0.0005 (16)
C230.044 (2)0.0413 (19)0.0252 (16)0.0053 (16)0.0013 (14)−0.0024 (14)
C240.050 (2)0.044 (2)0.0238 (16)0.0019 (17)0.0010 (15)−0.0011 (14)
C250.050 (2)0.043 (2)0.0270 (17)0.0046 (17)0.0020 (15)0.0029 (15)
C260.048 (2)0.0403 (19)0.0274 (17)0.0037 (16)−0.0017 (15)−0.0009 (14)
C270.058 (2)0.041 (2)0.0337 (19)−0.0006 (18)0.0008 (17)0.0044 (15)
C280.061 (3)0.045 (2)0.045 (2)−0.0053 (19)−0.0036 (18)−0.0003 (17)
C290.056 (2)0.045 (2)0.0335 (19)−0.0041 (18)−0.0068 (17)−0.0026 (16)
C300.048 (2)0.0364 (18)0.0296 (17)0.0071 (16)0.0015 (15)−0.0014 (14)
C310.043 (2)0.0379 (18)0.0291 (16)0.0048 (16)0.0020 (14)−0.0001 (14)
C320.053 (2)0.047 (2)0.0319 (18)0.0041 (18)0.0035 (17)0.0003 (16)
C330.059 (2)0.056 (2)0.0275 (17)0.005 (2)0.0025 (17)0.0031 (16)
C340.075 (3)0.064 (3)0.040 (2)−0.004 (2)−0.010 (2)0.006 (2)
C350.083 (3)0.080 (3)0.050 (3)−0.006 (3)−0.021 (2)0.013 (2)
C360.092 (4)0.102 (4)0.046 (3)0.009 (3)−0.013 (3)0.025 (3)
C370.112 (5)0.120 (5)0.061 (3)−0.026 (4)−0.012 (3)0.047 (3)
C380.091 (4)0.097 (4)0.056 (3)−0.029 (3)−0.021 (3)0.031 (3)
C390.055 (2)0.055 (2)0.035 (2)0.0003 (19)0.0029 (17)0.0078 (18)
C400.053 (2)0.050 (2)0.0326 (19)−0.0002 (18)0.0077 (16)0.0055 (16)
C410.068 (3)0.064 (3)0.032 (2)0.000 (2)0.0034 (18)0.0131 (18)
C420.093 (3)0.065 (3)0.0281 (19)0.008 (3)0.013 (2)0.0021 (19)
C430.082 (3)0.056 (2)0.040 (2)0.001 (2)0.015 (2)−0.0049 (19)
C440.058 (2)0.041 (2)0.0368 (19)−0.0056 (18)0.0042 (17)0.0010 (16)
C450.063 (2)0.046 (2)0.0279 (18)−0.0028 (18)0.0090 (17)0.0049 (16)
O10.0694 (19)0.0610 (17)0.0317 (14)0.0165 (14)0.0037 (12)0.0042 (12)
O20.088 (2)0.0598 (17)0.0427 (15)0.0196 (16)0.0106 (15)0.0163 (13)
O30.115 (3)0.079 (2)0.0325 (14)0.024 (2)0.0107 (16)0.0190 (14)
O40.102 (2)0.0548 (17)0.0377 (15)−0.0002 (16)0.0142 (15)0.0096 (12)
O50.069 (2)0.0657 (19)0.070 (2)−0.0097 (16)−0.0132 (16)0.0058 (16)
O60.090 (2)0.0400 (15)0.0534 (16)0.0009 (15)0.0012 (15)−0.0008 (13)
OW10.070 (2)0.0505 (17)0.0360 (14)0.0062 (15)0.0031 (14)0.0059 (13)
S10.0690 (7)0.0400 (5)0.0379 (5)−0.0021 (5)−0.0012 (5)0.0026 (4)
N10.0531 (19)0.0443 (17)0.0342 (16)0.0029 (15)−0.0038 (14)−0.0004 (13)
N20.0509 (18)0.0456 (17)0.0283 (15)0.0036 (14)−0.0026 (13)0.0015 (13)
N30.0510 (19)0.0470 (18)0.0363 (16)−0.0050 (15)−0.0077 (14)0.0020 (13)
N40.0508 (19)0.0391 (18)0.0361 (16)0.0011 (15)−0.0022 (14)0.0026 (14)
N50.0493 (18)0.0415 (16)0.0288 (14)−0.0026 (14)−0.0035 (13)0.0059 (12)
N60.0513 (18)0.0471 (17)0.0231 (14)0.0014 (15)−0.0014 (13)−0.0002 (12)
N70.0512 (19)0.0480 (18)0.0246 (14)0.0032 (14)−0.0007 (13)−0.0028 (13)
N80.059 (2)0.0480 (18)0.0236 (14)0.0009 (16)−0.0001 (14)0.0014 (13)
Zn0.0535 (3)0.0465 (3)0.0276 (2)0.0027 (2)−0.00348 (19)0.0027 (2)

Geometric parameters (Å, °)

C1—N11.324 (5)C26—C301.407 (5)
C1—C21.384 (6)C27—C281.380 (5)
C1—H10.9300C27—H270.9300
C2—C31.360 (6)C28—C291.382 (6)
C2—H20.9300C28—H280.9300
C3—C41.400 (5)C29—N61.318 (5)
C3—H30.9300C29—H290.9300
C4—C121.410 (5)C30—N61.362 (4)
C4—C51.426 (5)C30—C311.442 (5)
C5—N31.371 (5)C31—N51.360 (4)
C5—C61.393 (5)C32—N71.322 (5)
C6—N41.359 (5)C32—N81.359 (5)
C6—C71.432 (5)C32—C331.478 (5)
C7—C111.397 (5)C33—C381.368 (7)
C7—C81.410 (5)C33—C341.369 (6)
C8—C91.361 (5)C34—C351.377 (6)
C8—H80.9300C34—H340.9300
C9—C101.389 (6)C35—C361.367 (8)
C9—H90.9300C35—H350.9300
C10—N21.332 (5)C36—C371.354 (8)
C10—H100.9300C36—H360.9300
C11—N21.354 (4)C37—C381.386 (6)
C11—C121.468 (5)C37—H370.9300
C12—N11.348 (5)C38—H380.9300
C13—N31.324 (5)C39—O11.261 (5)
C13—N41.378 (5)C39—O21.265 (5)
C13—C141.460 (5)C39—C401.501 (6)
C14—C191.386 (6)C40—C451.379 (5)
C14—C151.404 (5)C40—C411.401 (5)
C15—C161.371 (6)C41—O31.359 (5)
C15—H150.9300C41—C421.384 (6)
C16—C171.385 (7)C42—C431.378 (6)
C16—H160.9300C42—H420.9300
C17—C181.386 (6)C43—C441.392 (5)
C17—H170.9300C43—H430.9300
C18—C191.381 (6)C44—C451.369 (6)
C18—H180.9300C44—S11.776 (4)
C19—H190.9300C45—H450.9300
C20—N51.315 (5)O3—H3C0.8200
C20—C211.392 (5)O4—S11.461 (3)
C20—H200.9300O5—S11.429 (3)
C21—C221.369 (5)O6—S11.448 (3)
C21—H210.9300OW1—H1WA0.86 (2)
C22—C231.398 (5)OW1—H1WB0.840 (19)
C22—H220.9300N4—H4B0.86 (4)
C23—C311.417 (4)N8—H8B0.96 (5)
C23—C241.434 (5)Zn—O12.080 (3)
C24—C251.374 (5)Zn—OW12.196 (3)
C24—N71.388 (4)Zn—N12.177 (3)
C25—N81.377 (4)Zn—N22.184 (3)
C25—C261.429 (5)Zn—N52.141 (3)
C26—C271.400 (5)Zn—N62.120 (3)
N1—C1—C2123.5 (4)N5—C31—C30117.4 (3)
N1—C1—H1118.2C23—C31—C30121.5 (3)
C2—C1—H1118.2N7—C32—N8112.4 (3)
C3—C2—C1118.6 (4)N7—C32—C33125.8 (3)
C3—C2—H2120.7N8—C32—C33121.7 (3)
C1—C2—H2120.7C38—C33—C34117.5 (4)
C2—C3—C4120.2 (3)C38—C33—C32121.2 (4)
C2—C3—H3119.9C34—C33—C32121.3 (4)
C4—C3—H3119.9C33—C34—C35121.6 (4)
C3—C4—C12116.9 (3)C33—C34—H34119.2
C3—C4—C5125.6 (3)C35—C34—H34119.2
C12—C4—C5117.4 (3)C36—C35—C34120.0 (5)
N3—C5—C6110.4 (3)C36—C35—H35120.0
N3—C5—C4128.3 (3)C34—C35—H35120.0
C6—C5—C4121.3 (3)C37—C36—C35119.5 (4)
N4—C6—C5105.7 (3)C37—C36—H36120.3
N4—C6—C7131.2 (3)C35—C36—H36120.3
C5—C6—C7122.9 (3)C36—C37—C38120.1 (5)
C11—C7—C8118.1 (3)C36—C37—H37119.9
C11—C7—C6116.2 (3)C38—C37—H37119.9
C8—C7—C6125.6 (4)C33—C38—C37121.3 (5)
C9—C8—C7119.0 (4)C33—C38—H38119.3
C9—C8—H8120.5C37—C38—H38119.3
C7—C8—H8120.5O1—C39—O2124.6 (4)
C8—C9—C10119.4 (4)O1—C39—C40117.8 (3)
C8—C9—H9120.3O2—C39—C40117.6 (3)
C10—C9—H9120.3C45—C40—C41118.9 (4)
N2—C10—C9123.0 (3)C45—C40—C39120.2 (3)
N2—C10—H10118.5C41—C40—C39120.8 (3)
C9—C10—H10118.5O3—C41—C42118.6 (4)
N2—C11—C7122.0 (3)O3—C41—C40121.6 (4)
N2—C11—C12116.3 (3)C42—C41—C40119.8 (4)
C7—C11—C12121.6 (3)C43—C42—C41120.2 (4)
N1—C12—C4122.4 (3)C43—C42—H42119.9
N1—C12—C11117.4 (3)C41—C42—H42119.9
C4—C12—C11120.3 (3)C42—C43—C44120.1 (4)
N3—C13—N4111.9 (3)C42—C43—H43119.9
N3—C13—C14125.0 (3)C44—C43—H43119.9
N4—C13—C14123.1 (3)C45—C44—C43119.4 (4)
C19—C14—C15118.8 (3)C45—C44—S1118.1 (3)
C19—C14—C13122.5 (3)C43—C44—S1122.5 (3)
C15—C14—C13118.7 (4)C44—C45—C40121.5 (3)
C16—C15—C14120.5 (4)C44—C45—H45119.2
C16—C15—H15119.8C40—C45—H45119.2
C14—C15—H15119.8C39—O1—Zn128.6 (3)
C15—C16—C17120.3 (4)C41—O3—H3C109.5
C15—C16—H16119.8Zn—OW1—H1WA99 (4)
C17—C16—H16119.8Zn—OW1—H1WB119 (3)
C16—C17—C18119.6 (4)H1WA—OW1—H1WB118 (5)
C16—C17—H17120.2O5—S1—O6113.6 (2)
C18—C17—H17120.2O5—S1—O4113.49 (19)
C19—C18—C17120.3 (4)O6—S1—O4111.35 (19)
C19—C18—H18119.9O5—S1—C44106.73 (18)
C17—C18—H18119.9O6—S1—C44106.79 (17)
C18—C19—C14120.5 (4)O4—S1—C44104.06 (19)
C18—C19—H19119.7C1—N1—C12118.2 (3)
C14—C19—H19119.7C1—N1—Zn127.7 (3)
N5—C20—C21122.9 (4)C12—N1—Zn112.3 (2)
N5—C20—H20118.5C10—N2—C11118.2 (3)
C21—C20—H20118.5C10—N2—Zn127.9 (3)
C22—C21—C20119.0 (4)C11—N2—Zn112.6 (2)
C22—C21—H21120.5C13—N3—C5105.0 (3)
C20—C21—H21120.5C6—N4—C13106.9 (3)
C21—C22—C23119.8 (3)C6—N4—H4B127 (3)
C21—C22—H22120.1C13—N4—H4B125 (3)
C23—C22—H22120.1C20—N5—C31119.4 (3)
C22—C23—C31117.8 (3)C20—N5—Zn127.5 (2)
C22—C23—C24125.8 (3)C31—N5—Zn113.1 (2)
C31—C23—C24116.4 (3)C29—N6—C30118.6 (3)
C25—C24—N7110.1 (3)C29—N6—Zn127.6 (2)
C25—C24—C23120.8 (3)C30—N6—Zn113.8 (2)
N7—C24—C23128.9 (3)C32—N7—C24104.8 (3)
C24—C25—N8105.9 (3)C32—N8—C25106.9 (3)
C24—C25—C26124.5 (3)C32—N8—H8B133 (3)
N8—C25—C26129.4 (3)C25—N8—H8B120 (3)
C27—C26—C30118.9 (3)O1—Zn—N692.25 (12)
C27—C26—C25125.9 (3)O1—Zn—N597.90 (12)
C30—C26—C25115.1 (3)N1—Zn—N276.13 (11)
C28—C27—C26118.6 (3)N6—Zn—N578.42 (11)
C28—C27—H27120.7O1—Zn—N193.32 (12)
C26—C27—H27120.7N6—Zn—N198.51 (12)
C27—C28—C29119.0 (4)N5—Zn—N1168.46 (12)
C27—C28—H28120.5O1—Zn—N2166.53 (10)
C29—C28—H28120.5N6—Zn—N297.52 (12)
N6—C29—C28123.8 (3)N5—Zn—N293.14 (11)
N6—C29—H29118.1O1—Zn—OW185.83 (12)
C28—C29—H29118.1N6—Zn—OW1169.79 (11)
N6—C30—C26121.1 (3)N5—Zn—OW191.90 (11)
N6—C30—C31117.3 (3)N1—Zn—OW191.62 (11)
C26—C30—C31121.6 (3)N2—Zn—OW186.12 (12)
N5—C31—C23121.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3C···O20.821.822.547 (4)147
OW1—H1WA···O20.86 (2)1.90 (3)2.712 (4)157 (5)
OW1—H1WB···N7i0.84 (2)2.05 (2)2.877 (4)170 (4)
N4—H4B···O6ii0.86 (4)2.05 (4)2.883 (4)162 (4)
N4—H4B···S1ii0.86 (4)3.02 (4)3.854 (4)163 (3)
N8—H8B···O4iii0.96 (5)1.85 (5)2.794 (5)167 (5)
N8—H8B···S1iii0.96 (5)2.94 (5)3.793 (4)148 (4)

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+3/2, y−1/2, −z+3/2; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5120).

References

  • Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.
  • Li, C.-X., Li, X.-Y., Liu, C.-B., Yan, Y.-S. & Che, G.-B. (2009). Acta Cryst. E65, m53.
  • Liu, D.-M., Li, X.-Y., Wang, X.-C., Li, C.-X. & Liu, C.-B. (2009). Acta Cryst. E65, o1308. [PMC free article] [PubMed]
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Steck, E. A. & Day, A. R. (1943). J. Am. Chem. Soc.65, 452–456.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography