PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2767.
Published online 2009 October 17. doi:  10.1107/S1600536809041427
PMCID: PMC2971269

(E,E)-4,4′-Dichloro-2,2′-[azinobis(phenyl­methyl­idyne)]diphenol

Abstract

The title compound, C26H18Cl2N2O2, was synthesized by the reaction of (5-chloro-2-hydroxy­phen­yl)(phen­yl)methanone with hydrazine hydrate. The mol­ecule possesses a crystallographically imposed centre of symmetry at the mid-point of the N—N bond. The conformation of the mol­ecule is stabilized by an intra­molecular O—H(...)N hydrogen bond.

Related literature

For further details of the chemistry of the title compound, see: Glaser et al. (1995 [triangle]); Hunig et al. (2000 [triangle]). For similar structures, see: Kundu et al. (2005 [triangle]); Chang et al. (2007 [triangle]); Kesslen et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2767-scheme1.jpg

Experimental

Crystal data

  • C26H18Cl2N2O2
  • M r = 461.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2767-efi1.jpg
  • a = 13.1622 (11) Å
  • b = 10.6184 (9) Å
  • c = 16.0671 (13) Å
  • V = 2245.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 295 K
  • 0.21 × 0.19 × 0.15 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.925, T max = 0.960
  • 11062 measured reflections
  • 1995 independent reflections
  • 1448 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.163
  • S = 1.00
  • 1995 reflections
  • 146 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041427/pk2195sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041427/pk2195Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Taishan University (No. Y05–2–09)

supplementary crystallographic information

Comment

Recently, a number of azine compounds containing both a diimine linkage and N—N bonding have been investigated in terms of their crystallography and coordination chemistry (Kundu et al., 2005; Kesslen et al., 1999; Chang et al., 2007;). As an extension of work on the structural characterization of azine derivatives, the title compound was synthesized and its crystal structure is reported here.

In the title compound, there is a crystallographic centre of symmetry at the midpoint of the N—N bond (Fig. 1.). The molecule displays an (E, E) conformation with respect to the C7=N1 and its symmetry related c7a=N1a double bond (Fig. 1.). This configuration agrees with those commonly found in similar compounds (Glaser et al., 1995; Hunig et al., 2000). The benzene rings, C1—C6(A), C8—C13(B) make dihedral angles of 85.26 (10)°. The conformation of the molecule is stabilized by intramolecular O—H···N hydrogen bonds. (Table 1. and Fig. 1).

Experimental

An ethanol solution (50 ml) of hydrazine (0.02 mol) and (5-chloro-2-hydroxyphenyl)(phenyl)methanone (0.04 mol) was refluxed and stirred for 6 h; the mixture was cooled and the resulting solid product, was collected by filtration. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution in acetone.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with C—H(aromatic) = 0.93 Å, O—H = 0.82 Å and with Uiso(H) =1.5Ueq(O) and 1.2Ueq(Car).

Figures

Fig. 1.
The molecular structure of compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines show intramolecular hydrogen bonds.

Crystal data

C26H18Cl2N2O2F(000) = 952
Mr = 461.32Dx = 1.365 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2411 reflections
a = 13.1622 (11) Åθ = 2.5–24.9°
b = 10.6184 (9) ŵ = 0.32 mm1
c = 16.0671 (13) ÅT = 295 K
V = 2245.6 (3) Å3Plate, yellow
Z = 40.21 × 0.19 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1995 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
graphiteRint = 0.033
[var phi] and ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −7→15
Tmin = 0.925, Tmax = 0.960k = −12→12
11062 measured reflectionsl = −18→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.113P)2 + 0.120P] where P = (Fo^2^ + 2Fc^2^)/3
1995 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.23969 (7)0.00971 (8)0.37894 (5)0.0751 (4)
O10.0498 (2)−0.25287 (17)0.10094 (15)0.0776 (7)
H10.0336−0.20490.06320.116*
N10.01697 (18)−0.03788 (18)0.03234 (13)0.0534 (6)
C10.0915 (2)−0.1871 (2)0.16297 (18)0.0584 (8)
C20.09948 (19)−0.0543 (2)0.16200 (16)0.0487 (7)
C30.1464 (2)0.0039 (2)0.22956 (15)0.0502 (7)
H30.15340.09110.23000.060*
C40.1822 (2)−0.0646 (2)0.29475 (16)0.0555 (7)
C50.1737 (2)−0.1941 (3)0.29588 (19)0.0671 (8)
H50.1983−0.24020.34080.081*
C60.1291 (3)−0.2536 (3)0.2306 (2)0.0709 (9)
H60.1235−0.34090.23120.085*
C70.06111 (19)0.0215 (2)0.09230 (15)0.0468 (6)
C80.0749 (2)0.1609 (2)0.09250 (16)0.0503 (7)
C9−0.0003 (3)0.2398 (3)0.1189 (2)0.0801 (10)
H9−0.06090.20680.13910.096*
C100.0135 (3)0.3694 (3)0.1158 (3)0.1007 (13)
H10−0.03770.42300.13420.121*
C110.1022 (3)0.4180 (3)0.0857 (2)0.0905 (11)
H110.11080.50480.08270.109*
C120.1777 (3)0.3402 (3)0.0602 (2)0.0782 (10)
H120.23840.37370.04050.094*
C130.1644 (2)0.2118 (3)0.06340 (19)0.0660 (8)
H130.21640.15870.04570.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0985 (7)0.0654 (6)0.0615 (6)−0.0123 (4)−0.0284 (4)0.0114 (3)
O10.124 (2)0.0360 (11)0.0729 (14)−0.0034 (11)−0.0286 (14)0.0010 (9)
N10.0740 (15)0.0362 (11)0.0500 (12)0.0003 (10)−0.0115 (10)0.0046 (9)
C10.0757 (19)0.0383 (14)0.0612 (17)0.0019 (12)−0.0088 (14)0.0026 (12)
C20.0576 (15)0.0352 (12)0.0533 (14)0.0035 (11)−0.0037 (11)0.0052 (11)
C30.0596 (15)0.0379 (12)0.0531 (15)−0.0002 (11)−0.0045 (11)0.0052 (11)
C40.0639 (16)0.0462 (14)0.0565 (15)0.0000 (12)−0.0074 (13)0.0065 (12)
C50.084 (2)0.0506 (16)0.0673 (18)0.0046 (15)−0.0175 (15)0.0158 (14)
C60.099 (2)0.0402 (14)0.0733 (19)0.0036 (14)−0.0188 (17)0.0107 (13)
C70.0564 (15)0.0362 (13)0.0477 (13)0.0009 (10)−0.0035 (11)0.0037 (10)
C80.0636 (16)0.0387 (13)0.0486 (13)−0.0017 (12)−0.0098 (12)0.0031 (11)
C90.080 (2)0.0472 (17)0.113 (3)0.0045 (15)0.0075 (18)−0.0080 (16)
C100.112 (3)0.057 (2)0.133 (3)0.022 (2)−0.006 (2)−0.015 (2)
C110.128 (3)0.0418 (18)0.102 (3)−0.0125 (19)−0.032 (2)0.0059 (17)
C120.104 (2)0.0579 (19)0.0724 (19)−0.0258 (18)−0.0146 (18)0.0126 (16)
C130.0825 (19)0.0504 (16)0.0653 (17)−0.0083 (14)−0.0043 (15)0.0053 (13)

Geometric parameters (Å, °)

Cl1—C41.739 (3)C6—H60.9300
O1—C11.335 (3)C7—C81.491 (4)
O1—H10.8200C8—C91.365 (4)
N1—C71.290 (3)C8—C131.378 (4)
N1—N1i1.388 (4)C9—C101.388 (4)
C1—C61.387 (4)C9—H90.9300
C1—C21.414 (4)C10—C111.365 (5)
C2—C31.394 (4)C10—H100.9300
C2—C71.469 (3)C11—C121.355 (5)
C3—C41.360 (3)C11—H110.9300
C3—H30.9300C12—C131.376 (4)
C4—C51.381 (4)C12—H120.9300
C5—C61.359 (4)C13—H130.9300
C5—H50.9300
C1—O1—H1109.5N1—C7—C8122.8 (2)
C7—N1—N1i114.9 (2)C2—C7—C8120.0 (2)
O1—C1—C6117.7 (2)C9—C8—C13119.0 (3)
O1—C1—C2122.9 (2)C9—C8—C7121.5 (3)
C6—C1—C2119.4 (3)C13—C8—C7119.5 (2)
C3—C2—C1117.8 (2)C8—C9—C10120.2 (4)
C3—C2—C7120.2 (2)C8—C9—H9119.9
C1—C2—C7122.0 (2)C10—C9—H9119.9
C4—C3—C2121.1 (2)C11—C10—C9120.0 (4)
C4—C3—H3119.5C11—C10—H10120.0
C2—C3—H3119.5C9—C10—H10120.0
C3—C4—C5121.0 (2)C12—C11—C10120.2 (3)
C3—C4—Cl1120.50 (19)C12—C11—H11119.9
C5—C4—Cl1118.5 (2)C10—C11—H11119.9
C6—C5—C4119.2 (2)C11—C12—C13120.0 (3)
C6—C5—H5120.4C11—C12—H12120.0
C4—C5—H5120.4C13—C12—H12120.0
C5—C6—C1121.5 (2)C12—C13—C8120.6 (3)
C5—C6—H6119.3C12—C13—H13119.7
C1—C6—H6119.3C8—C13—H13119.7
N1—C7—C2117.2 (2)
O1—C1—C2—C3−178.7 (3)C1—C2—C7—N11.8 (4)
C6—C1—C2—C30.8 (4)C3—C2—C7—C81.7 (4)
O1—C1—C2—C70.6 (4)C1—C2—C7—C8−177.6 (2)
C6—C1—C2—C7−179.9 (3)N1—C7—C8—C983.9 (4)
C1—C2—C3—C4−0.8 (4)C2—C7—C8—C9−96.8 (3)
C7—C2—C3—C4179.9 (2)N1—C7—C8—C13−94.4 (3)
C2—C3—C4—C50.4 (4)C2—C7—C8—C1384.9 (3)
C2—C3—C4—Cl1−179.5 (2)C13—C8—C9—C100.5 (5)
C3—C4—C5—C60.2 (5)C7—C8—C9—C10−177.8 (3)
Cl1—C4—C5—C6−180.0 (3)C8—C9—C10—C110.4 (6)
C4—C5—C6—C1−0.2 (5)C9—C10—C11—C12−1.2 (6)
O1—C1—C6—C5179.2 (3)C10—C11—C12—C131.0 (5)
C2—C1—C6—C5−0.3 (5)C11—C12—C13—C8−0.1 (5)
N1i—N1—C7—C2−179.4 (3)C9—C8—C13—C12−0.6 (4)
N1i—N1—C7—C80.0 (4)C7—C8—C13—C12177.7 (3)
C3—C2—C7—N1−178.9 (2)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (3)145

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2195).

References

  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chang, J.-G., He, G.-F. & Li, Y.-F. (2007). Acta Cryst. E63, o3982.
  • Glaser, R., Chen, G. S., Anthamatten, M. & Barnes, C. L. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1449–1458.
  • Hunig, S., Kemmer, M. & Wenner, H. (2000). Chem. Eur. J.6, 2618–2632. [PubMed]
  • Kesslen, E. C., Euler, W. B. & Foxman, B. M. (1999). Chem. Mater.11, 336–340.
  • Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585.
  • Sheldrick, G. M. (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography