PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2597.
Published online 2009 October 3. doi:  10.1107/S1600536809039087
PMCID: PMC2971264

3-Hydr­oxy-3-nitro­methyl­indolin-2-one

Abstract

In the title compound, C9H8N2O4, the indolin-2-one ring system is substanti­ally planar [maximum deviation = 0.0353 (15) Å]. In the crystal structure, inter­molecular N—H(...)O and O—H(...)O hydrogen bonds are responsible for the formation of a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Imre et al. (2001 [triangle]); Long et al. (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2597-scheme1.jpg

Experimental

Crystal data

  • C9H8N2O4
  • M r = 208.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2597-efi1.jpg
  • a = 10.515 (2) Å
  • b = 7.3736 (14) Å
  • c = 23.261 (4) Å
  • V = 1803.6 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 293 K
  • 0.21 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.941, T max = 0.961
  • 16322 measured reflections
  • 3807 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.135
  • S = 1.03
  • 3807 reflections
  • 136 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND Brandenburg (1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039087/rz2364sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039087/rz2364Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by two grants from the Natural Science Research Plan Projects of Shaanxi Science and Technology Department (SJ08B20) and the Scientific Research Plan Projects of Shaanxi Education Department (08JK413).

supplementary crystallographic information

Comment

3-Hydroxy-3-nitromethyl-1,3-dihydro-indolin-2-one, an important intermediate for the synthesis of natural products, has been synthesized by Henry reaction (Imre et al.,2001; Long et al., 1978). Dehydration of this compound as well as its derivatives provides 3-nitromethylene-1,3-dihydro-indolin-2-one, which is used as a dipolarophile in 1,3-dipolar cycloadditon reactions to synthesize spiro-oxindole compounds. In this paper we report the X-ray crystal structure of the title compound.

The X-ray structural analysis confirmed the assignment of the structure of the title compound from spectroscopic data. The molecular structure is depicted in Fig. 1, and a packing diagram of is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The indolin-2-one ring system is substantially planar, with a maximum deviation of 0.0353 (15) Å for atom C4. In the crystal structure, intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) are effective in the stabilization of the structure and are responsible for the formation of a three-dimensional network. The O atoms of nitro group are not involved in any hydrogen bond.

Experimental

Isatin (1 mmol) was dissolved in nitromethane (20 ml), catalyzed by DBU, until the disappearance of the starting material, as evidenced by thin-layer chromatography. The solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethyl acetate = 5:1 v/v), giving the title compound. 1H-NMR (D6—DMSO, 400 MHz): 10.56 (1H, s), 7.39 (1H, d, J = 7.2 Hz), 7.26 (1H, td, J = 7.6, 1.2 Hz), 6.98 (1H, t, J = 7.6 Hz), 6.85 (1H, d, J = 7.6 Hz), 6.75 (1H, s), 4.99 (2H, dd, J = 12.8, 8.0 Hz); 13C-NMR (CDCl3, 100 MHz): 176.0, 142.6, 130.3, 127.9, 124.7, 121.9, 110.1, 78.5, 72.8; MS (EI) m/z: 208 (M+). 30 mg of the solid compound was dissolved in methanol (30 ml) and the solution was kept at room temperature for 4 d. Slow evaporation of the solvent gave colourless single crystals suitable for X-ray analysis.

Refinement

All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å, O–H = 0.82 Å, N–H = 0.86 Å, and refined using riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(O).

Figures

Fig. 1.
An ORTEP-3 drawing of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound viewed approximately along the b axis. Dashed lines indicate hydrogen bonds.

Crystal data

C9H8N2O4F(000) = 864
Mr = 208.17Dx = 1.533 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3122 reflections
a = 10.515 (2) Åθ = 1.8–34.3°
b = 7.3736 (14) ŵ = 0.12 mm1
c = 23.261 (4) ÅT = 293 K
V = 1803.6 (6) Å3Block, colourless
Z = 80.21 × 0.18 × 0.15 mm

Data collection

Bruker SMART CCD area-detector diffractometer3807 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
graphiteRint = 0.026
[var phi] and ω scansθmax = 34.3°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −12→12
Tmin = 0.941, Tmax = 0.961k = −9→11
16322 measured reflectionsl = −28→36

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0699P)2 + 0.2564P] where P = (Fo2 + 2Fc2)/3
3807 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.73793 (10)0.22536 (14)0.59575 (4)0.0345 (2)
H1A0.81210.26840.58820.041*
C70.68870 (11)0.20320 (15)0.65183 (5)0.0313 (3)
C80.56744 (11)0.12898 (14)0.64887 (5)0.0294 (2)
C20.53211 (11)0.10262 (14)0.58677 (5)0.0287 (2)
O10.67140 (9)0.16574 (14)0.50346 (4)0.0452 (3)
C30.50087 (12)0.08802 (17)0.69844 (5)0.0374 (3)
H3A0.41960.03860.69660.045*
C90.41221 (12)0.20580 (16)0.56828 (5)0.0354 (3)
H9A0.40590.20480.52670.043*
H9B0.33770.14530.58370.043*
C60.74609 (13)0.24268 (17)0.70380 (5)0.0396 (3)
H6A0.82640.29510.70550.048*
N20.41524 (12)0.39586 (15)0.58894 (5)0.0470 (3)
C50.67832 (15)0.20049 (18)0.75336 (6)0.0450 (3)
H5A0.71450.22530.78900.054*
C40.55872 (14)0.1227 (2)0.75123 (5)0.0448 (3)
H4A0.51670.09340.78520.054*
O30.50508 (14)0.48843 (17)0.57450 (9)0.0904 (5)
O40.32881 (14)0.44827 (19)0.61941 (6)0.0776 (4)
C10.65394 (11)0.17044 (15)0.55545 (5)0.0317 (3)
O20.51621 (8)−0.08414 (11)0.57414 (4)0.0391 (2)
H2A0.4586−0.09660.55070.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0244 (5)0.0384 (5)0.0408 (5)−0.0081 (4)−0.0017 (4)0.0000 (4)
C70.0299 (6)0.0267 (5)0.0372 (6)0.0003 (4)−0.0040 (4)0.0000 (4)
C80.0259 (6)0.0268 (5)0.0353 (5)0.0019 (4)−0.0030 (4)0.0005 (4)
C20.0237 (6)0.0254 (5)0.0370 (5)−0.0008 (4)−0.0022 (4)−0.0024 (4)
O10.0378 (5)0.0603 (6)0.0374 (5)−0.0092 (4)0.0023 (4)−0.0040 (4)
C30.0303 (6)0.0389 (6)0.0431 (6)0.0043 (5)0.0031 (5)0.0048 (5)
C90.0276 (6)0.0352 (6)0.0435 (6)0.0037 (5)−0.0069 (5)−0.0055 (5)
C60.0370 (7)0.0356 (6)0.0463 (6)−0.0006 (5)−0.0139 (5)−0.0037 (5)
N20.0474 (7)0.0366 (6)0.0569 (7)0.0135 (5)−0.0168 (5)−0.0048 (5)
C50.0520 (8)0.0454 (7)0.0377 (6)0.0136 (6)−0.0120 (5)−0.0052 (5)
C40.0476 (8)0.0503 (7)0.0364 (6)0.0154 (6)0.0037 (5)0.0044 (5)
O30.0736 (9)0.0354 (6)0.1620 (17)−0.0061 (6)−0.0100 (9)0.0024 (7)
O40.0866 (10)0.0763 (8)0.0700 (8)0.0389 (7)−0.0037 (7)−0.0255 (7)
C10.0262 (6)0.0314 (5)0.0374 (6)−0.0017 (4)−0.0008 (4)−0.0019 (4)
O20.0317 (5)0.0265 (4)0.0591 (5)−0.0010 (3)−0.0098 (4)−0.0076 (3)

Geometric parameters (Å, °)

N1—C11.3500 (16)C3—H3A0.9300
N1—C71.4130 (16)C9—N21.4819 (17)
N1—H1A0.8600C9—H9A0.9700
C7—C61.3822 (17)C9—H9B0.9700
C7—C81.3893 (17)C6—C51.390 (2)
C8—C31.3823 (17)C6—H6A0.9300
C8—C21.5042 (15)N2—O31.2129 (19)
C2—O21.4180 (13)N2—O41.2155 (18)
C2—C91.5340 (16)C5—C41.383 (2)
C2—C11.5563 (16)C5—H5A0.9300
O1—C11.2237 (14)C4—H4A0.9300
C3—C41.3940 (19)O2—H2A0.8200
C1—N1—C7111.51 (10)C2—C9—H9A109.4
C1—N1—H1A124.2N2—C9—H9B109.4
C7—N1—H1A124.2C2—C9—H9B109.4
C6—C7—C8121.81 (11)H9A—C9—H9B108.0
C6—C7—N1128.55 (11)C7—C6—C5117.02 (12)
C8—C7—N1109.63 (10)C7—C6—H6A121.5
C3—C8—C7120.63 (11)C5—C6—H6A121.5
C3—C8—C2130.37 (11)O3—N2—O4124.39 (14)
C7—C8—C2108.98 (10)O3—N2—C9117.33 (13)
O2—C2—C8110.71 (9)O4—N2—C9118.28 (14)
O2—C2—C9109.07 (9)C4—C5—C6121.94 (12)
C8—C2—C9114.09 (9)C4—C5—H5A119.0
O2—C2—C1108.19 (9)C6—C5—H5A119.0
C8—C2—C1101.81 (9)C5—C4—C3120.29 (12)
C9—C2—C1112.70 (9)C5—C4—H4A119.9
C8—C3—C4118.28 (12)C3—C4—H4A119.9
C8—C3—H3A120.9O1—C1—N1126.62 (11)
C4—C3—H3A120.9O1—C1—C2125.24 (10)
N2—C9—C2111.13 (9)N1—C1—C2108.05 (10)
N2—C9—H9A109.4C2—O2—H2A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.132.9849 (14)171
O2—H2A···O1ii0.821.932.7408 (13)171

Symmetry codes: (i) −x+3/2, y+1/2, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2364).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Imre, F., Miklós, N., Áron, S., Gábor, B. & László, T. (2001). Tetrahedron, 57, 1129–1137.
  • Long D. R., Richards C. G. & Ross M. S. F. (1978). J. Heterocycl. Chem.15, 633–637.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography