PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2931–o2932.
Published online 2009 October 31. doi:  10.1107/S1600536809044468
PMCID: PMC2971263

Tetra­kis(2,6-diamino­pyridinium) diphthalate 2,6-diamino­pyridine

Abstract

In the title compound, 4C5H8N3 +·2C8H4O4 2−·C5H7N3, the asymmetric unit consists of two protonated diamino­pyridine cations, one phthalate anion and one half of a diamino­pyridine mol­ecule, which has twofold rotation symmetry and is disordered over two positions with a site-occupancy ratio of 0.534 (3):0.466 (3). In the disordered structure, both pyridine rings are essentially planar, with maximum deviations of 0.011 (2) and 0.006 (2) Å, and these two rings are inclined to one another at a dihedral angle of 79.86 (10)°. In the crystal structure, inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link the ions and mol­ecules into a three-dimensional network. The structure is further stabilized by C—H(...)π inter­actions.

Related literature

For background to 2,6-diamino­pyridines, see: Abu Zuhri & Cox (1989 [triangle]); Inuzuka & Fujimoto (1990 [triangle]). For background and the biological activity of phthalic acid, see: Brike et al. (2002 [triangle]); Yamamoto et al. (1990 [triangle]). For the preparation of polymer complexes, see: El-Mossalamy (2001 [triangle]). For a related structure: see: Büyükgüngör & Odabąsoğlu (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2931-scheme1.jpg

Experimental

Crystal data

  • 4C5H8N3 +·2C8H4O4 2−·C5H7N3
  • M r = 877.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2931-efi1.jpg
  • a = 29.7011 (6) Å
  • b = 15.2183 (3) Å
  • c = 9.7666 (2) Å
  • β = 101.670 (1)°
  • V = 4323.25 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.65 × 0.19 × 0.08 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.939, T max = 0.992
  • 28159 measured reflections
  • 6403 independent reflections
  • 3722 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.153
  • S = 1.05
  • 6403 reflections
  • 368 parameters
  • 138 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044468/is2475sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044468/is2475Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Universiti Sains Malaysia (USM) under the Research University Grant (1001/PKIMIA/811055). HKF and WSL thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012).

supplementary crystallographic information

Comment

2,6-Diaminopyridinium and diaminopyridine in general have an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It has amino-imino tautomerization property (Inuzuka & Fujimoto, 1990) and it can be used to prepare polymer complexes with lead(II), cadmium(II) and zinc(II) (El-Mossalamy, 2001). Phthalic acid is an aromatic dicarboxylic acid and can be used in its anhydride form to produce other chemicals such as dyes, perfumes, phthalates and many others. It can be prepared from the catalytic oxidation of naphthalene in a new production method (Brike et al., 2002). Some of its derivatives have anti-tumor promoting action (Yamamoto et al., 1990). The crystal structure of this molecule can be helpful in future experimental and theoretical studies.

The asymmetric unit of the title salt (Fig. 1) contains two 2,6-diaminopyridine cations, one phthalate anion and a half 2,6-diaminopyridine molecule. The 2,6-diaminopyridine molecule has a twofold rotation symmetry. Atom N7 and C21 of the major component and N7A and C21A of the minor component lie across the crystallographic twofold rotation symmetry [suffix A corresponds to the symmetry code = -x, y, 1/2 - z]. Two protons are transferred from the carboxyl groups of the phthalic acid to atoms N1 and N4 of the 2,6-diaminopyridine moieties resulting in the formation of organic salts. The 2,6-diamionopyridine molecule is disordered over two positions with a site-occupancy ratio of 0.534 (3):0.466 (3). Both the N1/C9–C13 and N4/C14–C18 pyridine rings are essentially planar, with maximum deviations of 0.011 (2) Å at C12 and 0.006 (2) Å at C14, respectively. These two rings are inclined to one another with a dihedral angle of 79.86 (10)°. In the phthalate anion, the torsion angles of C1–C6–C8–O2 and C4–C5–C7–O3 are 88.3 (2) and -178.9 (2)°, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Büyükgüngör & Odabąsoǧlu, 2006).

This crystal structure is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. The N atoms of the diaminopyridine cations provide the most extensive part as donors. In the crystal structure (Fig. 2), intermolecular N1—H1N1···O1, N2—H1N2···O2, N2—H2N2···O1, N3—H1N3···O2, N3—H1N3···O3, N3—H2N3···O2, N4—H1N4···O3, N5—H1N5···O3, N5—H2N5···O1, N6—H1N6···O4, N6—H2N6···O4, N8—H8A···O4 and C15—H15A···O3 hydrogen bonds (Table 1) link the structure into a three-dimensional network. This structure is further stabilized by weak intermolecular C—H···π (Table 1) interactions involving the C1–C6 (Centroid Cg1) ring.

Experimental

In order to prepare the title crystal, phthalic acid (0.01 mol, 1.75 g) was dissolved in 25 ml of THF in a round bottom flask. In a separating funnel, 2,6-diaminopyridine (0.03 mol, 3.75 g) was dissolved in 20 ml of THF. 2,6-Diaminopyridine solution was added in drops to the flask of phthalic acid solution with stirring. The reaction mixture was left stirring for 3 h at room temperature. Colourless crystals were separated, washed with THF and dried at 80°C.

Refinement

Hydrogen atoms attached to nitrogen atoms (excepting for H8A, H8B, H8AA and H8AB) were located in a difference Fourier map. H8A, H8B, H8AA, H8AB and all the hydrogen atoms attached to carbon atoms were positioned geometrically [N–H = 0.86 Å, C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(N, C). Rigid, similarity and simulation restraints were applied to the disordered diaminopyridine ring.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor disordered component.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis, showing the three-dimensional network. Only major components are shown. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

4C5H8N3+·2C8H4O42·C5H7N3F(000) = 1848
Mr = 877.94Dx = 1.349 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8039 reflections
a = 29.7011 (6) Åθ = 2.5–29.2°
b = 15.2183 (3) ŵ = 0.10 mm1
c = 9.7666 (2) ÅT = 100 K
β = 101.670 (1)°Plate, colourless
V = 4323.25 (15) Å30.65 × 0.19 × 0.08 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6403 independent reflections
Radiation source: fine-focus sealed tube3722 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 30.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −41→33
Tmin = 0.939, Tmax = 0.992k = −18→21
28159 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0492P)2 + 4.6062P] where P = (Fo2 + 2Fc2)/3
6403 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.41 e Å3
138 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.21274 (4)0.08852 (11)0.21602 (15)0.0440 (4)
O20.22943 (4)0.23084 (10)0.25406 (14)0.0387 (4)
O30.13432 (4)0.19360 (12)0.30278 (14)0.0515 (5)
O40.06579 (4)0.23383 (10)0.18270 (14)0.0388 (4)
C10.18725 (7)0.19537 (15)−0.0669 (2)0.0423 (5)
H1A0.21770.1810−0.06720.051*
C20.15801 (8)0.21910 (16)−0.1906 (2)0.0456 (6)
H2A0.16890.2210−0.27340.055*
C30.11279 (7)0.23982 (14)−0.1911 (2)0.0405 (5)
H3A0.09320.2558−0.27420.049*
C40.09662 (6)0.23687 (14)−0.0685 (2)0.0348 (5)
H4A0.06600.2506−0.06980.042*
C50.12550 (6)0.21362 (13)0.05745 (18)0.0300 (4)
C60.17151 (6)0.19283 (14)0.05818 (18)0.0325 (5)
C70.10699 (6)0.21365 (14)0.18992 (19)0.0342 (5)
C80.20650 (6)0.16996 (16)0.18790 (19)0.0347 (5)
N30.19685 (7)0.30697 (15)0.5108 (2)0.0480 (5)
N10.20894 (5)0.44706 (13)0.59887 (17)0.0355 (4)
N20.22822 (6)0.58214 (16)0.7028 (2)0.0431 (5)
C90.20034 (6)0.53472 (15)0.6039 (2)0.0369 (5)
C100.16395 (7)0.56915 (17)0.5066 (2)0.0475 (6)
H10A0.15720.62890.50590.057*
C110.13800 (7)0.51321 (17)0.4111 (2)0.0497 (6)
H11A0.11370.53630.34580.060*
C120.14655 (7)0.42488 (17)0.4086 (2)0.0447 (6)
H12A0.12800.38840.34440.054*
C130.18370 (6)0.39106 (16)0.50433 (19)0.0384 (5)
N40.09366 (6)0.11944 (16)0.49015 (18)0.0464 (5)
N50.16327 (6)0.04646 (18)0.5394 (2)0.0502 (6)
N60.02842 (7)0.20371 (18)0.4271 (2)0.0634 (7)
C140.12044 (6)0.05699 (17)0.5647 (2)0.0448 (6)
C150.10308 (7)0.00880 (16)0.6624 (2)0.0455 (6)
H15A0.1209−0.03380.71630.055*
C160.05859 (7)0.02544 (17)0.6783 (2)0.0467 (6)
H16A0.0466−0.00710.74330.056*
C170.03147 (7)0.08875 (16)0.6008 (2)0.0453 (6)
H17A0.00160.09850.61250.054*
C180.04969 (6)0.13754 (17)0.5051 (2)0.0456 (6)
N70.00000.5548 (4)0.75000.0334 (16)0.534 (5)
N80.05683 (11)0.5598 (2)0.6223 (3)0.0411 (11)0.534 (5)
H8A0.05630.61620.62940.049*0.534 (5)
H8B0.07560.53520.57760.049*0.534 (5)
C190.0278 (2)0.5094 (5)0.6826 (7)0.0349 (15)0.534 (5)
C200.0267 (4)0.4174 (5)0.6760 (14)0.049 (2)0.534 (5)
H20A0.04400.38720.62190.059*0.534 (5)
C210.00000.3734 (7)0.75000.051 (3)0.534 (5)
H21A0.00000.31230.75000.061*0.534 (5)
N7A0.00000.4041 (6)0.75000.044 (2)0.466 (5)
N8A0.04699 (18)0.4030 (5)0.5906 (6)0.102 (2)0.466 (5)
H8AA0.04570.34660.59130.122*0.466 (5)
H8AB0.06290.42930.53840.122*0.466 (5)
C19A0.0240 (4)0.4504 (6)0.6714 (13)0.050 (2)0.466 (5)
C20A0.0241 (4)0.5423 (6)0.6703 (13)0.081 (3)0.466 (5)
H20B0.04080.57290.61480.097*0.466 (5)
C21A0.00000.5853 (10)0.75000.093 (5)0.466 (5)
H21B0.00000.64640.75000.111*0.466 (5)
H1N10.2349 (8)0.4278 (15)0.662 (3)0.055 (7)*
H1N20.2239 (10)0.648 (2)0.711 (3)0.084 (10)*
H2N20.2508 (8)0.5584 (15)0.754 (3)0.046 (7)*
H1N30.1847 (9)0.2727 (17)0.443 (3)0.057 (8)*
H2N30.2216 (8)0.2915 (15)0.574 (3)0.046 (6)*
H1N40.1058 (10)0.1524 (19)0.422 (3)0.078 (9)*
H1N50.1696 (8)0.0712 (16)0.464 (3)0.053 (8)*
H2N50.1805 (10)0.0010 (18)0.582 (3)0.069 (9)*
H1N60.0413 (9)0.2208 (17)0.353 (3)0.062 (7)*
H2N6−0.0011 (9)0.2076 (16)0.419 (3)0.059 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0227 (7)0.0637 (11)0.0404 (9)0.0031 (7)−0.0057 (6)0.0151 (8)
O20.0254 (6)0.0651 (10)0.0233 (7)0.0144 (7)−0.0008 (5)−0.0041 (7)
O30.0221 (6)0.1140 (14)0.0178 (7)0.0141 (8)0.0020 (5)−0.0077 (8)
O40.0169 (6)0.0635 (10)0.0354 (8)0.0058 (6)0.0042 (5)−0.0088 (7)
C10.0341 (10)0.0693 (16)0.0254 (10)0.0190 (10)0.0105 (8)0.0004 (10)
C20.0552 (13)0.0645 (16)0.0183 (10)0.0146 (11)0.0105 (9)−0.0021 (10)
C30.0463 (12)0.0493 (13)0.0200 (10)0.0113 (10)−0.0078 (8)−0.0049 (9)
C40.0244 (9)0.0490 (13)0.0261 (10)0.0089 (8)−0.0067 (7)−0.0089 (9)
C50.0206 (8)0.0492 (12)0.0185 (9)0.0091 (8)−0.0002 (7)−0.0075 (8)
C60.0250 (9)0.0527 (13)0.0192 (9)0.0120 (8)0.0034 (7)−0.0010 (8)
C70.0198 (8)0.0584 (14)0.0231 (9)0.0049 (8)0.0014 (7)−0.0111 (9)
C80.0152 (8)0.0696 (16)0.0195 (9)0.0125 (9)0.0041 (7)0.0045 (10)
N30.0394 (10)0.0767 (16)0.0229 (9)0.0302 (10)−0.0055 (8)−0.0076 (10)
N10.0186 (7)0.0658 (13)0.0223 (8)0.0113 (8)0.0044 (6)0.0089 (8)
N20.0203 (8)0.0636 (14)0.0411 (11)−0.0034 (8)−0.0041 (8)0.0173 (10)
C90.0190 (8)0.0614 (15)0.0307 (10)0.0044 (9)0.0062 (8)0.0125 (10)
C100.0280 (10)0.0582 (15)0.0502 (14)0.0066 (10)−0.0063 (10)0.0122 (12)
C110.0271 (10)0.0734 (18)0.0424 (13)0.0163 (11)−0.0076 (9)0.0089 (12)
C120.0295 (10)0.0721 (17)0.0286 (11)0.0187 (10)−0.0030 (8)−0.0025 (11)
C130.0264 (9)0.0711 (16)0.0184 (9)0.0164 (10)0.0063 (8)0.0009 (10)
N40.0241 (8)0.0920 (16)0.0210 (8)0.0174 (9)−0.0002 (7)−0.0105 (9)
N50.0266 (9)0.0893 (17)0.0310 (10)0.0215 (10)−0.0029 (8)−0.0127 (11)
N60.0260 (9)0.133 (2)0.0329 (11)0.0320 (11)0.0098 (8)0.0162 (12)
C140.0260 (9)0.0796 (17)0.0239 (10)0.0151 (10)−0.0068 (8)−0.0214 (11)
C150.0350 (11)0.0620 (16)0.0349 (12)0.0106 (10)−0.0042 (9)−0.0145 (11)
C160.0337 (11)0.0639 (16)0.0404 (12)0.0016 (10)0.0023 (9)−0.0155 (11)
C170.0235 (9)0.0747 (17)0.0361 (12)0.0056 (10)0.0023 (9)−0.0184 (11)
C180.0217 (9)0.0897 (18)0.0231 (10)0.0156 (10)−0.0009 (8)−0.0139 (11)
N70.025 (3)0.032 (4)0.037 (3)0.000−0.006 (2)0.000
N80.0274 (17)0.056 (2)0.040 (2)0.0022 (15)0.0074 (14)−0.0074 (16)
C190.021 (2)0.039 (4)0.037 (3)0.002 (3)−0.0130 (19)0.002 (3)
C200.041 (3)0.032 (4)0.066 (5)0.005 (3)−0.012 (3)−0.012 (4)
C210.032 (4)0.031 (6)0.073 (6)0.000−0.030 (3)0.000
N7A0.044 (4)0.035 (6)0.047 (4)0.000−0.002 (3)0.000
N8A0.060 (3)0.188 (7)0.061 (4)0.063 (4)0.020 (3)0.054 (4)
C19A0.036 (4)0.055 (6)0.050 (4)−0.008 (6)−0.016 (3)0.014 (6)
C20A0.062 (6)0.063 (6)0.091 (6)−0.028 (5)−0.048 (4)0.048 (5)
C21A0.083 (8)0.038 (8)0.120 (10)0.000−0.070 (6)0.000

Geometric parameters (Å, °)

O1—C81.275 (3)N4—H1N40.96 (3)
O2—C81.250 (3)N5—C141.353 (3)
O3—C71.267 (2)N5—H1N50.88 (3)
O4—C71.250 (2)N5—H2N50.91 (3)
C1—C21.386 (3)N6—C181.341 (3)
C1—C61.394 (2)N6—H1N60.92 (3)
C1—H1A0.9300N6—H2N60.87 (3)
C2—C31.379 (3)C14—C151.384 (3)
C2—H2A0.9300C15—C161.385 (3)
C3—C41.378 (3)C15—H15A0.9300
C3—H3A0.9300C16—C171.380 (3)
C4—C51.396 (3)C16—H16A0.9300
C4—H4A0.9300C17—C181.387 (3)
C5—C61.401 (2)C17—H17A0.9300
C5—C71.505 (2)N7—C19i1.346 (6)
C6—C81.508 (3)N7—C191.346 (6)
N3—C131.336 (3)N8—C191.373 (7)
N3—H1N30.86 (3)N8—H8A0.8600
N3—H2N30.89 (2)N8—H8B0.8600
N1—C91.361 (3)C19—C201.401 (7)
N1—C131.364 (3)C20—C211.354 (10)
N1—H1N10.93 (3)C20—H20A0.9300
N2—C91.347 (3)C21—C20i1.354 (10)
N2—H1N21.01 (3)C21—H21A0.9300
N2—H2N20.83 (2)N7A—C19Ai1.348 (10)
C9—C101.389 (3)N7A—C19A1.348 (10)
C10—C111.378 (3)N8A—C19A1.351 (10)
C10—H10A0.9300N8A—H8AA0.8600
C11—C121.369 (3)N8A—H8AB0.8600
C11—H11A0.9300C19A—C20A1.398 (10)
C12—C131.393 (3)C20A—C21A1.332 (12)
C12—H12A0.9300C20A—H20B0.9300
N4—C141.353 (3)C21A—C20Ai1.332 (12)
N4—C181.371 (2)C21A—H21B0.9300
C2—C1—C6120.62 (18)C14—N4—H1N4118.5 (17)
C2—C1—H1A119.7C18—N4—H1N4117.9 (17)
C6—C1—H1A119.7C14—N5—H1N5118.0 (16)
C3—C2—C1120.05 (18)C14—N5—H2N5118.2 (17)
C3—C2—H2A120.0H1N5—N5—H2N5121 (2)
C1—C2—H2A120.0C18—N6—H1N6115.7 (16)
C4—C3—C2120.00 (18)C18—N6—H2N6117.2 (17)
C4—C3—H3A120.0H1N6—N6—H2N6119 (2)
C2—C3—H3A120.0N5—C14—N4117.2 (2)
C3—C4—C5120.95 (17)N5—C14—C15123.9 (2)
C3—C4—H4A119.5N4—C14—C15118.87 (18)
C5—C4—H4A119.5C14—C15—C16118.5 (2)
C4—C5—C6119.12 (16)C14—C15—H15A120.7
C4—C5—C7119.45 (15)C16—C15—H15A120.7
C6—C5—C7121.41 (16)C17—C16—C15122.0 (2)
C1—C6—C5119.26 (17)C17—C16—H16A119.0
C1—C6—C8116.51 (15)C15—C16—H16A119.0
C5—C6—C8124.20 (15)C16—C17—C18118.67 (19)
O4—C7—O3123.78 (17)C16—C17—H17A120.7
O4—C7—C5118.39 (16)C18—C17—H17A120.7
O3—C7—C5117.83 (15)N6—C18—N4116.1 (2)
O2—C8—O1124.68 (17)N6—C18—C17125.55 (18)
O2—C8—C6118.3 (2)N4—C18—C17118.3 (2)
O1—C8—C6116.80 (19)C19i—N7—C19118.3 (7)
C13—N3—H1N3118.0 (17)C19—N8—H8A120.0
C13—N3—H2N3118.5 (15)C19—N8—H8B120.0
H1N3—N3—H2N3122 (2)H8A—N8—H8B120.0
C9—N1—C13123.73 (17)N7—C19—N8115.0 (5)
C9—N1—H1N1114.9 (15)N7—C19—C20121.6 (7)
C13—N1—H1N1121.2 (15)N8—C19—C20123.4 (7)
C9—N2—H1N2121.1 (17)C21—C20—C19118.7 (9)
C9—N2—H2N2120.2 (17)C21—C20—H20A120.6
H1N2—N2—H2N2119 (2)C19—C20—H20A120.6
N2—C9—N1117.26 (18)C20i—C21—C20120.7 (10)
N2—C9—C10124.7 (2)C20i—C21—H21A119.7
N1—C9—C10118.1 (2)C20—C21—H21A119.7
C11—C10—C9118.8 (2)C19Ai—N7A—C19A117.0 (10)
C11—C10—H10A120.6C19A—N8A—H8AA120.0
C9—C10—H10A120.6C19A—N8A—H8AB120.0
C12—C11—C10122.6 (2)H8AA—N8A—H8AB120.0
C12—C11—H11A118.7N7A—C19A—N8A116.2 (8)
C10—C11—H11A118.7N7A—C19A—C20A121.9 (10)
C11—C12—C13118.4 (2)N8A—C19A—C20A121.8 (10)
C11—C12—H12A120.8C21A—C20A—C19A119.0 (12)
C13—C12—H12A120.8C21A—C20A—H20B120.5
N3—C13—N1116.81 (18)C19A—C20A—H20B120.5
N3—C13—C12124.8 (2)C20A—C21A—C20Ai121.1 (14)
N1—C13—C12118.4 (2)C20A—C21A—H21B119.5
C14—N4—C18123.6 (2)C20Ai—C21A—H21B119.5
C6—C1—C2—C3−0.5 (4)C9—N1—C13—N3178.83 (17)
C1—C2—C3—C4−0.1 (4)C9—N1—C13—C12−1.0 (3)
C2—C3—C4—C50.4 (3)C11—C12—C13—N3−177.8 (2)
C3—C4—C5—C6−0.2 (3)C11—C12—C13—N12.0 (3)
C3—C4—C5—C7178.2 (2)C18—N4—C14—N5−179.7 (2)
C2—C1—C6—C50.7 (3)C18—N4—C14—C15−0.6 (3)
C2—C1—C6—C8−177.5 (2)N5—C14—C15—C16−179.8 (2)
C4—C5—C6—C1−0.4 (3)N4—C14—C15—C161.1 (3)
C7—C5—C6—C1−178.8 (2)C14—C15—C16—C17−0.6 (3)
C4—C5—C6—C8177.7 (2)C15—C16—C17—C18−0.6 (3)
C7—C5—C6—C8−0.7 (3)C14—N4—C18—N6177.5 (2)
C4—C5—C7—O40.7 (3)C14—N4—C18—C17−0.6 (3)
C6—C5—C7—O4179.11 (19)C16—C17—C18—N6−176.8 (2)
C4—C5—C7—O3−178.9 (2)C16—C17—C18—N41.2 (3)
C6—C5—C7—O3−0.5 (3)C19i—N7—C19—N8−176.8 (7)
C1—C6—C8—O288.3 (2)C19i—N7—C19—C203.0 (8)
C5—C6—C8—O2−89.8 (2)N7—C19—C20—C21−6.0 (16)
C1—C6—C8—O1−86.7 (2)N8—C19—C20—C21173.8 (7)
C5—C6—C8—O195.2 (2)C19—C20—C21—C20i2.9 (8)
C13—N1—C9—N2−179.82 (16)C19Ai—N7A—C19A—N8A−178.4 (12)
C13—N1—C9—C10−0.4 (3)C19Ai—N7A—C19A—C20A−0.2 (8)
N2—C9—C10—C11−179.8 (2)N7A—C19A—C20A—C21A0.4 (17)
N1—C9—C10—C110.8 (3)N8A—C19A—C20A—C21A178.5 (9)
C9—C10—C11—C120.2 (3)C19A—C20A—C21A—C20Ai−0.2 (8)
C10—C11—C12—C13−1.6 (3)

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1ii0.93 (3)1.78 (3)2.697 (2)170 (2)
N2—H1N2···O2iii1.01 (3)1.89 (3)2.889 (3)167 (3)
N2—H2N2···O1ii0.83 (3)2.48 (2)3.144 (3)138 (2)
N3—H1N3···O20.86 (3)2.56 (3)3.090 (2)120 (2)
N3—H1N3···O30.86 (3)2.18 (3)3.005 (3)161 (3)
N3—H2N3···O2ii0.89 (3)2.02 (3)2.892 (2)168 (2)
N4—H1N4···O30.96 (3)1.69 (3)2.641 (2)169 (3)
N5—H1N5···O30.88 (3)2.53 (3)3.208 (3)135 (2)
N5—H2N5···O1iv0.91 (3)2.00 (3)2.886 (3)166 (2)
N6—H1N6···O40.92 (3)1.96 (3)2.866 (2)169 (2)
N6—H2N6···O4v0.87 (3)2.02 (3)2.824 (2)155 (3)
N8—H8A···O4iii0.862.353.196 (4)170
C15—H15A···O3iv0.932.583.422 (3)151
C10—H10A···Cg1vi0.932.483.379 (3)163

Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) x, −y+1, z+1/2; (iv) x, −y, z+1/2; (v) −x, y, −z+1/2; (vi) −x+1/2, y+3/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2475).

References

  • Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Brike, G., Hirsch, M. & Franz, V. (2002). US Patent No. 636 838 9B1.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Büyükgüngör, O. & Odabąsoğlu, M. (2006). Acta Cryst. E62, o3816–o3818.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • El-Mossalamy, E. H. (2001). Pigm. Resin Technol 30, 164–168.
  • Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216–220.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yamamoto, S., Nakadate, T., Aizu, E. & Kato, R. (1990). Carcinogenesis, 11, 749–754. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography