PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2713.
Published online 2009 October 10. doi:  10.1107/S1600536809039889
PMCID: PMC2971261

N-(2,6-Dichloro­phen­yl)-3-methyl­benzamide

Abstract

In the mol­ecular structure of the title compound, C14H11Cl2NO, the two aromatic rings form a dihedral angle of 70.9 (1)°. The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl­phenyl ring and 82.5 (1)° with the dichloro­phenyl ring. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into chains running along the c axis of the crystal.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003 [triangle]). For related structures, see: Bowes et al. (2003 [triangle]); Gowda, Foro et al. (2008 [triangle]); Gowda, Tokarčík et al. (2008 [triangle]); Tokarčík et al., 2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2713-scheme1.jpg

Experimental

Crystal data

  • C14H11Cl2NO
  • M r = 280.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2713-efi2.jpg
  • a = 11.9433 (8) Å
  • b = 12.5397 (6) Å
  • c = 9.5305 (5) Å
  • β = 111.859 (7)°
  • V = 1324.72 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.48 mm−1
  • T = 295 K
  • 0.53 × 0.34 × 0.07 mm

Data collection

  • Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector
  • Absorption correction: analytical (CrysAlis Pro; Oxford Diffraction, 2009 [triangle]) T min = 0.756, T max = 0.979
  • 28271 measured reflections
  • 2553 independent reflections
  • 2368 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.068
  • S = 1.10
  • 2553 reflections
  • 164 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.22 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1273 Friedel pairs
  • Flack parameter: −0.02 (5)

Data collection: CrysAlis Pro (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2002 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009 [triangle]) and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039889/bt5081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039889/bt5081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008; Tokarčík et al., 2009), in the present work, the structure of N-(2,6-dichlorophenyl)-3-methylbenzamide (I) has been determined. The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 3-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008), N-(2,6-dichlorophenyl)benzamide (III) (Gowda, Tokarčík et al., 2008), 4-chloro-N-(2,6-dichlorophenyl)benzamide (Tokarčík et al., 2009) and the parent benzanilide (Bowes et al., 2003). The central amido group –NH—C(=O)– makes a dihedral angle of 26.6 (2)° with the methyl-phenyl ring and 82.5 (1) ° with the dichloro-phenyl-ring.

The dihedral angle between the two benzene rings in (I) is 70.9 (1)°, compared to the values of of 22.17 (18)°) & 75.86 (12) in the molecules 1 and 2 of (II), respectively, and 56.8 (1)° & 59.1 (1)° in the first and second molecules of (III), respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into chains running along the c-axis of the crystal. (Fig. 2).

Experimental

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Colourless single crystals of the title compound were obtained by a slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement

H atoms were found in difference maps and further treated as riding on their parent atoms, with C–H distances of 0.93 Å (for aromatic C), 0.96 Å (for methyl C) and 0.86 Å (N). The Uiso(H) values were set to 1.2 Ueq(C, N) or 1.5 Ueq(Cmethyl).

Figures

Fig. 1.
Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Part of the crystal structure of (I). Molecular chains running along the c-axis are generated by N–H···O(i) hydrogen bonds, shown as dashed lines. Symmetry code (i): x, -y + 1, z + 1/2.

Crystal data

C14H11Cl2NOF(000) = 576
Mr = 280.14Dx = 1.405 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 16815 reflections
a = 11.9433 (8) Åθ = 2.9–29.5°
b = 12.5397 (6) ŵ = 0.48 mm1
c = 9.5305 (5) ÅT = 295 K
β = 111.859 (7)°Block, colourless
V = 1324.72 (13) Å30.53 × 0.34 × 0.07 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur2 diffractometer with a Sapphire CCD detector2553 independent reflections
graphite2368 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.026
ω scansθmax = 25.8°, θmin = 2.9°
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009)h = −14→14
Tmin = 0.756, Tmax = 0.979k = −15→15
28271 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068w = 1/[σ2(Fo2) + (0.0314P)2 + 0.4349P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2553 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = −0.22 e Å3
2 restraintsAbsolute structure: Flack (1983), 1272 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.47074 (14)0.47784 (12)0.42954 (16)0.0406 (4)
H1N0.44240.51190.48730.049*
C10.41176 (16)0.48266 (14)0.27880 (19)0.0359 (4)
C20.30291 (15)0.55238 (14)0.22211 (19)0.0370 (4)
C30.21557 (17)0.52827 (16)0.0820 (2)0.0424 (4)
H30.2260.4690.02960.051*
C40.11285 (18)0.59068 (19)0.0182 (2)0.0517 (5)
C50.1019 (2)0.68018 (18)0.0964 (3)0.0579 (6)
H50.03520.72440.05410.069*
C60.1874 (2)0.70552 (18)0.2356 (2)0.0569 (5)
H60.17740.76570.28680.068*
C70.28792 (18)0.64175 (16)0.2992 (2)0.0452 (4)
H70.34540.65870.39350.054*
C80.57860 (17)0.41798 (15)0.49583 (19)0.0376 (4)
C90.57762 (19)0.31764 (15)0.5562 (2)0.0455 (4)
C100.6829 (2)0.26073 (18)0.6273 (3)0.0598 (6)
H100.68060.19380.66820.072*
C110.7908 (2)0.3044 (2)0.6365 (2)0.0624 (6)
H110.86210.26690.68480.075*
C120.79466 (19)0.4020 (2)0.5755 (2)0.0564 (5)
H120.86790.43040.58010.068*
C130.68896 (18)0.45856 (17)0.5070 (2)0.0449 (4)
C140.0183 (2)0.5595 (3)−0.1330 (3)0.0798 (8)
H14A−0.02830.5009−0.11940.12*
H14B0.05730.5387−0.20060.12*
H14C−0.03380.6191−0.1750.12*
O10.44576 (12)0.43125 (11)0.19225 (13)0.0464 (3)
Cl10.44089 (6)0.26275 (5)0.54294 (8)0.07568 (19)
Cl20.69514 (6)0.58258 (5)0.43069 (8)0.0773 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0406 (9)0.0519 (9)0.0281 (7)0.0081 (7)0.0116 (7)0.0011 (7)
C10.0383 (9)0.0381 (9)0.0312 (8)−0.0051 (7)0.0128 (8)−0.0003 (7)
C20.0382 (10)0.0411 (9)0.0307 (8)−0.0045 (7)0.0117 (7)0.0038 (7)
C30.0436 (11)0.0476 (11)0.0342 (9)−0.0031 (8)0.0125 (8)0.0028 (8)
C40.0399 (11)0.0677 (14)0.0398 (10)−0.0049 (10)0.0060 (9)0.0083 (10)
C50.0473 (12)0.0611 (13)0.0610 (13)0.0143 (10)0.0152 (10)0.0179 (11)
C60.0590 (13)0.0513 (12)0.0570 (13)0.0061 (10)0.0179 (11)−0.0007 (10)
C70.0445 (11)0.0470 (11)0.0399 (10)0.0008 (9)0.0108 (8)0.0001 (8)
C80.0415 (9)0.0427 (9)0.0269 (8)0.0027 (7)0.0106 (7)−0.0029 (7)
C90.0526 (11)0.0471 (10)0.0384 (9)−0.0004 (9)0.0186 (8)−0.0038 (9)
C100.0794 (17)0.0476 (12)0.0524 (13)0.0205 (11)0.0245 (12)0.0091 (10)
C110.0597 (14)0.0739 (16)0.0461 (11)0.0273 (12)0.0111 (10)0.0004 (11)
C120.0392 (11)0.0774 (16)0.0467 (11)0.0039 (10)0.0092 (9)−0.0051 (11)
C130.0457 (11)0.0504 (11)0.0351 (9)−0.0034 (9)0.0109 (8)−0.0042 (8)
C140.0539 (15)0.117 (2)0.0508 (14)0.0038 (15)−0.0015 (11)0.0086 (14)
O10.0515 (8)0.0573 (8)0.0298 (6)0.0054 (6)0.0146 (6)−0.0021 (6)
Cl10.0755 (4)0.0693 (4)0.0878 (4)−0.0162 (3)0.0367 (3)0.0088 (3)
Cl20.0730 (4)0.0646 (4)0.0919 (5)−0.0154 (3)0.0281 (3)0.0157 (3)

Geometric parameters (Å, °)

N1—C11.345 (2)C7—H70.93
N1—C81.420 (2)C8—C131.380 (3)
N1—H1N0.86C8—C91.385 (3)
C1—O11.229 (2)C9—C101.384 (3)
C1—C21.491 (3)C9—Cl11.733 (2)
C2—C71.388 (3)C10—C111.373 (4)
C2—C31.388 (3)C10—H100.93
C3—C41.390 (3)C11—C121.363 (4)
C3—H30.93C11—H110.93
C4—C51.380 (3)C12—C131.381 (3)
C4—C141.514 (3)C12—H120.93
C5—C61.376 (3)C13—Cl21.730 (2)
C5—H50.93C14—H14A0.96
C6—C71.381 (3)C14—H14B0.96
C6—H60.93C14—H14C0.96
C1—N1—C8121.77 (15)C13—C8—C9117.29 (18)
C1—N1—H1N119.1C13—C8—N1121.45 (18)
C8—N1—H1N119.1C9—C8—N1121.23 (18)
O1—C1—N1121.38 (17)C10—C9—C8121.7 (2)
O1—C1—C2121.72 (15)C10—C9—Cl1119.38 (16)
N1—C1—C2116.90 (15)C8—C9—Cl1118.94 (16)
C7—C2—C3119.11 (16)C11—C10—C9119.1 (2)
C7—C2—C1123.28 (15)C11—C10—H10120.5
C3—C2—C1117.55 (16)C9—C10—H10120.5
C2—C3—C4121.54 (18)C12—C11—C10120.7 (2)
C2—C3—H3119.2C12—C11—H11119.6
C4—C3—H3119.2C10—C11—H11119.6
C5—C4—C3117.86 (18)C11—C12—C13119.5 (2)
C5—C4—C14122.5 (2)C11—C12—H12120.3
C3—C4—C14119.6 (2)C13—C12—H12120.3
C6—C5—C4121.51 (19)C8—C13—C12121.7 (2)
C6—C5—H5119.2C8—C13—Cl2119.23 (15)
C4—C5—H5119.2C12—C13—Cl2119.04 (17)
C5—C6—C7120.1 (2)C4—C14—H14A109.5
C5—C6—H6120C4—C14—H14B109.5
C7—C6—H6120H14A—C14—H14B109.5
C6—C7—C2119.84 (17)C4—C14—H14C109.5
C6—C7—H7120.1H14A—C14—H14C109.5
C2—C7—H7120.1H14B—C14—H14C109.5
C8—N1—C1—O13.5 (3)C1—N1—C8—C1381.8 (2)
C8—N1—C1—C2−177.04 (16)C1—N1—C8—C9−100.2 (2)
O1—C1—C2—C7−152.45 (18)C13—C8—C9—C101.1 (3)
N1—C1—C2—C728.1 (2)N1—C8—C9—C10−176.96 (17)
O1—C1—C2—C324.6 (2)C13—C8—C9—Cl1−179.28 (13)
N1—C1—C2—C3−154.84 (16)N1—C8—C9—Cl12.7 (2)
C7—C2—C3—C4−0.9 (3)C8—C9—C10—C11−0.8 (3)
C1—C2—C3—C4−178.08 (17)Cl1—C9—C10—C11179.57 (17)
C2—C3—C4—C52.1 (3)C9—C10—C11—C12−0.5 (3)
C2—C3—C4—C14−178.3 (2)C10—C11—C12—C131.5 (3)
C3—C4—C5—C6−2.2 (3)C9—C8—C13—C12−0.1 (3)
C14—C4—C5—C6178.3 (2)N1—C8—C13—C12177.97 (17)
C4—C5—C6—C71.0 (4)C9—C8—C13—Cl2178.92 (14)
C5—C6—C7—C20.4 (3)N1—C8—C13—Cl2−3.0 (2)
C3—C2—C7—C6−0.4 (3)C11—C12—C13—C8−1.2 (3)
C1—C2—C7—C6176.62 (18)C11—C12—C13—Cl2179.77 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.072.866 (2)155

Symmetry codes: (i) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5081).

References

  • Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [PubMed]
  • Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o770. [PMC free article] [PubMed]
  • Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  • Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o540. [PMC free article] [PubMed]
  • Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tokarčík, M., Gowda, B. T., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2009). Acta Cryst. E65, o1637–o1638. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography