PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2785.
Published online 2009 October 17. doi:  10.1107/S160053680904210X
PMCID: PMC2971259

4,6-Dimethyl-2-p-tolyl­pyrimidine

Abstract

The mol­ecule of the title compound, C13H14N2, is located on a crystallographic mirror plane. The aromatic rings make a dihedral angle of 3.4 (2)°. The H atoms of the methyl groups on the benzene ring are disordered over two positions; their site-occupation factors were fixed at 0.5. In the crystal, inter­molecular C—H(...)π contacts form infinite chains perpendicular to the b axis.

Related literature

The title compound was derived from the reaction of p-tolylmercutic chlorides and 4,6-dimethyl-2-iodopyrimidine. For general background to the use of organomercury compounds in cross-coupling reactions, see: Beletskaya et al. (2001 [triangle]); Braga et al. (2004 [triangle]). For a related structure, see: Santoni et al. (2008 [triangle]). For the synthesis, see: Xu et al. (2009a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2785-scheme1.jpg

Experimental

Crystal data

  • C13H14N2
  • M r = 198.26
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2785-efi1.jpg
  • a = 7.2086 (10) Å
  • b = 12.4668 (18) Å
  • c = 12.4335 (18) Å
  • V = 1117.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 296 K
  • 0.35 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.976, T max = 0.985
  • 7934 measured reflections
  • 1089 independent reflections
  • 777 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.131
  • S = 1.06
  • 1089 reflections
  • 78 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904210X/si2211sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904210X/si2211Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Henan Education Department (No. 2009B150019).

supplementary crystallographic information

Comment

The organomercury compounds have a number of notable advantages over other organometallic compounds commonly used in cross-coupling reactions, including higher selectivity of reactions, extra stability and easy availability by a direct mercuration (Beletskaya et al., 2001; Braga et al., 2004). We have recently reported ferrocene-heterocycles were obtained from the coupling reaction(Xu et al., 2009a,b). Here we report the crystal structure of the title compound, derived from the reaction of p-tolylmercutic chlorides and 4,6-dimethyl-2-iodopyrimidine.

Due to the molecular mirror symmetry m of the title compound (Fig.1), and coincidence with the crystallographic mirror plane m (space group Pnma),the atoms C1, C2, C5, C8, H8 are half occupied and the H atoms of the methyl groups in the benzene ring are disordered over two positions; their site-occupation factors were fixed at 0.5. The aromatic rings have very small angles between their planes (dihedral angle is 3.4 (2)°) due to the absence of H—H repulsion (Santoni et al., 2008). Fig.2 shows that in the crystal there exist intermolecular C—H···π interactions (Table 1, Cg1 is the centroid of the pyrimidine ring).

Experimental

The title compound was obtained from the coupling reaction of p-tolylmercutic chlorides and 4,6-dimethyl-2-iodopyrimidine as described in literature (Xu et al., 2009b) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93–0.96 Å, and with Uiso(H)=1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with displacement ellipsoids at the 30% probability level, the disordered H atoms are omitted (Symmetry code A: -x + 2, -y, -z).
Fig. 2.
Partial view of the crystal packing showing the formation of the infinite chain of molecules formed by the C—H···π interactions.

Crystal data

C13H14N2Dx = 1.179 Mg m3
Mr = 198.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1634 reflections
a = 7.2086 (10) Åθ = 2.3–23.3°
b = 12.4668 (18) ŵ = 0.07 mm1
c = 12.4335 (18) ÅT = 296 K
V = 1117.4 (3) Å3Block, colourless
Z = 40.35 × 0.25 × 0.22 mm
F(000) = 424

Data collection

Bruker SMART APEX CCD area-detector diffractometer1089 independent reflections
Radiation source: fine-focus sealed tube777 reflections with I > 2σ(I)
graphiteRint = 0.025
phi and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.976, Tmax = 0.985k = −15→15
7934 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0557P)2 + 0.291P] where P = (Fo2 + 2Fc2)/3
1089 reflections(Δ/σ)max < 0.001
78 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.8988 (4)0.25000.6728 (2)0.0709 (8)
H1A0.87810.28700.73940.106*0.50
H1B0.99520.28560.63320.106*0.50
H1C0.93550.17740.68740.106*0.50
C20.7231 (3)0.25000.60770 (17)0.0499 (6)
C30.6383 (2)0.34507 (13)0.57708 (13)0.0544 (5)
H30.69340.41000.59530.065*
C40.4741 (2)0.34546 (12)0.52012 (13)0.0522 (5)
H40.42010.41050.50090.063*
C50.3884 (3)0.25000.49107 (16)0.0449 (5)
C60.2078 (3)0.25000.43367 (17)0.0468 (5)
C7−0.0325 (2)0.34504 (13)0.36089 (13)0.0529 (5)
C8−0.1188 (3)0.25000.33466 (18)0.0549 (6)
H8−0.23310.25000.30000.066*
C9−0.1170 (3)0.45227 (14)0.33570 (16)0.0732 (6)
H9A−0.09740.50010.39510.110*
H9B−0.24770.44380.32350.110*
H9C−0.05980.48140.27240.110*
N10.13292 (18)0.34589 (10)0.41062 (10)0.0509 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0703 (17)0.0703 (18)0.0720 (17)0.000−0.0169 (14)0.000
C20.0541 (14)0.0531 (13)0.0425 (11)0.000−0.0007 (10)0.000
C30.0600 (11)0.0446 (9)0.0584 (10)−0.0043 (8)−0.0036 (8)−0.0048 (7)
C40.0588 (10)0.0390 (9)0.0589 (10)0.0022 (7)−0.0028 (8)0.0002 (7)
C50.0507 (12)0.0407 (11)0.0433 (11)0.0000.0027 (10)0.000
C60.0545 (13)0.0430 (12)0.0428 (11)0.0000.0018 (10)0.000
C70.0550 (10)0.0541 (10)0.0496 (9)0.0045 (8)0.0009 (7)0.0034 (7)
C80.0510 (13)0.0608 (15)0.0528 (13)0.000−0.0047 (11)0.000
C90.0702 (12)0.0598 (12)0.0896 (14)0.0091 (10)−0.0128 (10)0.0094 (10)
N10.0546 (8)0.0449 (8)0.0532 (8)0.0031 (6)−0.0025 (6)0.0021 (6)

Geometric parameters (Å, °)

C1—C21.503 (3)C5—C61.485 (3)
C1—H1A0.9600C6—N1i1.3426 (16)
C1—H1B0.9600C6—N11.3426 (16)
C1—H1C0.9600C7—N11.343 (2)
C2—C3i1.387 (2)C7—C81.378 (2)
C2—C31.387 (2)C7—C91.502 (2)
C3—C41.380 (2)C8—C7i1.378 (2)
C3—H30.9300C8—H80.9300
C4—C51.3885 (19)C9—H9A0.9600
C4—H40.9300C9—H9B0.9600
C5—C4i1.3885 (19)C9—H9C0.9600
C2—C1—H1A109.5C4i—C5—C6121.00 (11)
C2—C1—H1B109.5N1i—C6—N1125.8 (2)
H1A—C1—H1B109.5N1i—C6—C5117.07 (10)
C2—C1—H1C109.5N1—C6—C5117.07 (10)
H1A—C1—H1C109.5N1—C7—C8121.12 (16)
H1B—C1—H1C109.5N1—C7—C9116.67 (15)
C3i—C2—C3117.4 (2)C8—C7—C9122.20 (16)
C3i—C2—C1121.28 (11)C7—C8—C7i118.7 (2)
C3—C2—C1121.28 (11)C7—C8—H8120.7
C4—C3—C2121.48 (16)C7i—C8—H8120.7
C4—C3—H3119.3C7—C9—H9A109.5
C2—C3—H3119.3C7—C9—H9B109.5
C3—C4—C5120.81 (16)H9A—C9—H9B109.5
C3—C4—H4119.6C7—C9—H9C109.5
C5—C4—H4119.6H9A—C9—H9C109.5
C4—C5—C4i118.0 (2)H9B—C9—H9C109.5
C4—C5—C6121.00 (11)C6—N1—C7116.62 (15)
C3i—C2—C3—C41.2 (3)C4i—C5—C6—N1178.65 (17)
C1—C2—C3—C4−178.02 (19)N1—C7—C8—C7i0.3 (3)
C2—C3—C4—C5−0.3 (3)C9—C7—C8—C7i−179.77 (14)
C3—C4—C5—C4i−0.7 (3)N1i—C6—N1—C70.6 (3)
C3—C4—C5—C6177.47 (16)C5—C6—N1—C7−178.53 (15)
C4—C5—C6—N1i−178.65 (17)C8—C7—N1—C6−0.4 (3)
C4i—C5—C6—N1i−0.6 (3)C9—C7—N1—C6179.62 (16)
C4—C5—C6—N10.6 (3)

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···Cg1ii0.932.793.638 (2)152

Symmetry codes: (ii) −x−1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2211).

References

  • Beletskaya, I. P., Tsvetkov, A. V., Latyshev, G. V., Tafeenko, V. A. & Lukashev, N. V. (2001). J. Organomet. Chem.637, 653–663.
  • Braga, D., D’Addario, D. & Polito, M. (2004). Organometallics23, 2810–2812.
  • Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Santoni, M.-P. C., Yu, S. H., Hanan, G. S., Proust, A. & Hasenknopf, B. (2008). Acta Cryst. E64, o584. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xu, C., Hao, X.-Q., Liu, F., Wu, X.-J. & Song, M.-P. (2009a). Acta Cryst. E65, m517. [PMC free article] [PubMed]
  • Xu, C., Wang, Z. Q., Fu, W. J., Lou, X. H., Li, Y. F., Cen, F. F., Ma, H. J. & Ji, B. M. (2009b). Organometallics28, 1909–1916.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography