PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2840.
Published online 2009 October 23. doi:  10.1107/S1600536809042937
PMCID: PMC2971258

1-{1-[(2-Chloro­thia­zol-5-yl)meth­yl]-5-methyl-1H-1,2,3-triazol-4-yl}ethanone

Abstract

In the title compound, C9H9ClN4OS, the two rings enclose a dihedral angle of 84.67 (11)°. Inter­molecular C—H(...)O and C—H(...)N hydrogen bonds stabilize the crystal packing.

Related literature

For the biological activity of triazole derivatives, see Najim et al. (2004 [triangle]); Liu et al. (2001 [triangle]). For the synthesis of the title compound, see: Chen & Shi (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2840-scheme1.jpg

Experimental

Crystal data

  • C9H9ClN4OS
  • M r = 256.71
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2840-efi1.jpg
  • a = 10.5421 (6) Å
  • b = 11.1494 (6) Å
  • c = 19.8557 (10) Å
  • V = 2333.8 (2) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.49 mm−1
  • T = 298 K
  • 0.16 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 22708 measured reflections
  • 2556 independent reflections
  • 2336 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.128
  • S = 1.15
  • 2556 reflections
  • 147 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042937/bt5103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042937/bt5103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support of this work by Yunyang Medical College (grant No. 2007ZQB24).

supplementary crystallographic information

Comment

It is well known that many triazole-related molecules play an important role in the development of agrochemicals such as insecticides, nematocides, acaricide and plant growth regulators ( Najim et al., 2004; Liu et al., 2001). The structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound (Fig. 1), which was synthesized by adding a thiazole rings to a 1,2,3-Triazole molecular framework. Intermolecular C—H···O and C—H···N hydrogen bonds contribute strongly to the stability of the crystal packing (Fig. 2).

Experimental

Acetylacetone (2 mmol) and 5-azidomethyl-2-chlorothiazole (2 mmol) were added to a suspension of milled potassium carbonate (6 mmol) in DMSO (10 ml). The mixture was stirred at room temperature for 10 h (monitored by thin-layer chromatography) and poured to water (50 ml). The solid was collected by filtration, washed with water and diethyl ether, respectively, and dried to give 0.46 g of the title compound (yield 90%). Colorless crystals of (I) suitable for X-ray structure analysis were grown from acetone and petroleum ether (1:3, v/v).

Refinement

H atoms bonded to C were placed at calculated positions, with C—H distances of 0.97 and 0.93Å for H atoms bonded to sp3 and sp2 C atoms, respectively. They were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). the methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
View of the molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial view of the crystal packing of the title compound, showing the C—H···O and C—H···N hydrogen bonds as dashed lines.

Crystal data

C9H9ClN4OSDx = 1.461 Mg m3
Mr = 256.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9847 reflections
a = 10.5421 (6) Åθ = 2.8–28.3°
b = 11.1494 (6) ŵ = 0.49 mm1
c = 19.8557 (10) ÅT = 298 K
V = 2333.8 (2) Å3Block, colorless
Z = 80.16 × 0.10 × 0.10 mm
F(000) = 1056

Data collection

Bruker SMART APEX CCD area-detector diffractometer2336 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
graphiteθmax = 27.0°, θmin = 2.1°
[var phi] and ω scansh = −13→13
22708 measured reflectionsk = −14→14
2556 independent reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.15w = 1/[σ2(Fo2) + (0.0593P)2 + 0.9336P] where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.06077 (19)0.5833 (2)0.07494 (12)0.0523 (5)
C20.1710 (2)0.4540 (2)0.13106 (13)0.0611 (6)
H20.18380.39140.16130.073*
C30.26783 (19)0.50485 (18)0.09799 (9)0.0425 (4)
C40.40502 (19)0.47144 (17)0.10133 (10)0.0433 (4)
H4A0.41710.41370.13730.052*
H4B0.42910.43310.05940.052*
C50.50309 (18)0.64274 (16)0.16817 (9)0.0389 (4)
C60.59612 (18)0.72323 (17)0.14998 (9)0.0403 (4)
C70.4283 (3)0.6266 (2)0.23107 (11)0.0649 (7)
H7A0.33950.63360.22110.097*
H7B0.45190.68720.26310.097*
H7C0.44520.54880.24970.097*
C80.6563 (2)0.81698 (19)0.19098 (11)0.0492 (5)
C90.7538 (2)0.8946 (2)0.15856 (13)0.0637 (6)
H9A0.78300.95330.19030.096*
H9B0.71730.93440.12030.096*
H9C0.82390.84600.14410.096*
Cl1−0.06811 (6)0.66155 (7)0.04706 (5)0.0803 (3)
N10.05217 (18)0.4984 (2)0.11826 (11)0.0659 (6)
N20.48829 (14)0.57468 (14)0.11306 (7)0.0380 (3)
N30.56710 (16)0.61037 (18)0.06291 (9)0.0499 (4)
N40.63206 (16)0.70047 (17)0.08532 (8)0.0498 (4)
O10.6277 (2)0.82866 (17)0.24974 (9)0.0745 (5)
S10.21063 (5)0.61575 (6)0.04596 (3)0.0553 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0380 (10)0.0567 (12)0.0623 (13)−0.0021 (9)0.0002 (9)−0.0114 (11)
C20.0553 (13)0.0692 (15)0.0589 (13)−0.0073 (11)0.0030 (10)0.0170 (11)
C30.0443 (10)0.0455 (10)0.0376 (9)−0.0051 (8)−0.0020 (8)−0.0005 (8)
C40.0475 (10)0.0421 (10)0.0405 (9)−0.0010 (8)−0.0026 (8)−0.0021 (8)
C50.0438 (10)0.0384 (9)0.0344 (9)0.0058 (8)−0.0010 (7)−0.0005 (7)
C60.0385 (9)0.0433 (10)0.0391 (9)0.0041 (7)−0.0016 (7)−0.0009 (7)
C70.0893 (19)0.0635 (14)0.0419 (11)−0.0171 (13)0.0195 (11)−0.0072 (10)
C80.0520 (11)0.0442 (10)0.0514 (12)0.0021 (9)−0.0063 (9)−0.0048 (9)
C90.0555 (13)0.0612 (14)0.0745 (15)−0.0125 (11)−0.0003 (12)−0.0112 (12)
Cl10.0474 (4)0.0764 (5)0.1170 (6)0.0117 (3)−0.0114 (3)−0.0108 (4)
N10.0470 (11)0.0823 (15)0.0683 (13)−0.0106 (10)0.0095 (9)0.0072 (11)
N20.0367 (8)0.0438 (8)0.0333 (7)0.0019 (6)−0.0005 (6)−0.0020 (6)
N30.0494 (10)0.0628 (11)0.0375 (8)−0.0066 (8)0.0062 (7)−0.0066 (8)
N40.0462 (9)0.0611 (11)0.0423 (9)−0.0072 (8)0.0063 (7)−0.0067 (8)
O10.1052 (15)0.0692 (11)0.0490 (9)−0.0220 (10)0.0015 (9)−0.0161 (8)
S10.0431 (3)0.0575 (4)0.0653 (4)−0.0022 (2)−0.0006 (2)0.0173 (2)

Geometric parameters (Å, °)

C1—N11.283 (3)C5—C71.488 (3)
C1—Cl11.707 (2)C6—N41.362 (2)
C1—S11.720 (2)C6—C81.469 (3)
C2—C31.340 (3)C7—H7A0.9600
C2—N11.371 (3)C7—H7B0.9600
C2—H20.9300C7—H7C0.9600
C3—C41.495 (3)C8—O11.212 (3)
C3—S11.720 (2)C8—C91.490 (3)
C4—N21.466 (2)C9—H9A0.9600
C4—H4A0.9700C9—H9B0.9600
C4—H4B0.9700C9—H9C0.9600
C5—N21.341 (2)N2—N31.357 (2)
C5—C61.378 (3)N3—N41.295 (3)
N1—C1—Cl1122.58 (17)C5—C7—H7B109.5
N1—C1—S1116.39 (17)H7A—C7—H7B109.5
Cl1—C1—S1121.03 (15)C5—C7—H7C109.5
C3—C2—N1116.9 (2)H7A—C7—H7C109.5
C3—C2—H2121.6H7B—C7—H7C109.5
N1—C2—H2121.6O1—C8—C6120.2 (2)
C2—C3—C4127.6 (2)O1—C8—C9121.7 (2)
C2—C3—S1109.37 (17)C6—C8—C9118.14 (19)
C4—C3—S1123.01 (14)C8—C9—H9A109.5
N2—C4—C3113.00 (16)C8—C9—H9B109.5
N2—C4—H4A109.0H9A—C9—H9B109.5
C3—C4—H4A109.0C8—C9—H9C109.5
N2—C4—H4B109.0H9A—C9—H9C109.5
C3—C4—H4B109.0H9B—C9—H9C109.5
H4A—C4—H4B107.8C1—N1—C2109.05 (19)
N2—C5—C6103.75 (16)C5—N2—N3111.21 (16)
N2—C5—C7123.72 (18)C5—N2—C4130.06 (16)
C6—C5—C7132.53 (18)N3—N2—C4118.71 (15)
N4—C6—C5108.88 (17)N4—N3—N2107.41 (15)
N4—C6—C8122.34 (18)N3—N4—C6108.75 (16)
C5—C6—C8128.73 (18)C1—S1—C388.29 (11)
C5—C7—H7A109.5
N1—C2—C3—C4−178.2 (2)C6—C5—N2—N3−0.2 (2)
N1—C2—C3—S1−0.6 (3)C7—C5—N2—N3178.9 (2)
C2—C3—C4—N2−130.4 (2)C6—C5—N2—C4178.39 (17)
S1—C3—C4—N252.3 (2)C7—C5—N2—C4−2.5 (3)
N2—C5—C6—N40.3 (2)C3—C4—N2—C569.8 (2)
C7—C5—C6—N4−178.7 (2)C3—C4—N2—N3−111.75 (19)
N2—C5—C6—C8−177.00 (18)C5—N2—N3—N40.0 (2)
C7—C5—C6—C84.0 (4)C4—N2—N3—N4−178.78 (17)
N4—C6—C8—O1−174.8 (2)N2—N3—N4—C60.2 (2)
C5—C6—C8—O12.2 (3)C5—C6—N4—N3−0.4 (2)
N4—C6—C8—C94.2 (3)C8—C6—N4—N3177.18 (18)
C5—C6—C8—C9−178.8 (2)N1—C1—S1—C3−0.6 (2)
Cl1—C1—N1—C2−179.37 (19)Cl1—C1—S1—C3179.14 (15)
S1—C1—N1—C20.4 (3)C2—C3—S1—C10.65 (18)
C3—C2—N1—C10.2 (3)C4—C3—S1—C1178.39 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4B···N3i0.972.483.399 (3)159
C4—H4A···O1ii0.972.483.376 (3)153
C7—H7C···O1ii0.962.573.396 (3)144

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5103).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X. B. & Shi, D. Q. (2008). J. Heterocycl. Chem.45, 1493–1497.
  • Liu, Z. M., Yang, G. F. & Qing, X. H. (2001). J. Chem. Technol. Biotechnol.76, 1154–1158.
  • Najim, A. A., Yaseen, A. A. & Asmehan, A. (2004). Heteroat. Chem.15, 380–387.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography