PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1402–m1403.
Published online 2009 October 23. doi:  10.1107/S1600536809041907
PMCID: PMC2971253

μ 3-Oxido-hexa-μ 2-pivalato-tris[(methanol-κO)cobalt(III)] chloride

Abstract

The crystal structure of the title compound, [Co3(C5H9O2)6O(CH4O)3]Cl, consists of trinuclear CoIII complex cations and chloride anions. The CoIII cation has site symmetry m, and is coordinated by four oxygen atoms from four bridging pivalate groups, one central O anion and a methanol oxygen atom, forming a distorted octa­hedral geometry. The coordinated methanol mol­ecule is located on a crystallographic special position, the C and O atoms being located on the mirror plane. The central O anion lies in the crystallographic An external file that holds a picture, illustration, etc.
Object name is e-65-m1402-efi2.jpg position, and acts as a μ 3-O bridge, linking three equivalent CoIII cations and generating the oxo-centered trinuclear CoIII complex. The chloride anion, which acts as the counter-ion, is located on crystallographic An external file that holds a picture, illustration, etc.
Object name is e-65-m1402-efi2.jpg position. O—H(...)Cl hydrogen bonding between the Cl anion and hydroxyl group of the coordinated methanol mol­ecule links the mol­ecules into a supra­molecular network.

Related literature

For oxido-centered triangular Co complexes, see: Aromì et al. (2003 [triangle]); Fursova et al. (2007 [triangle]). For related structures, see: Beattie et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1402-scheme1.jpg

Experimental

Crystal data

  • [Co3(C5H9O2)6O(CH4O)3]Cl
  • M r = 931.10
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-65-m1402-efi4.jpg
  • a = 10.4868 (15) Å
  • c = 22.794 (5) Å
  • V = 2170.9 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.26 mm−1
  • T = 293 K
  • 0.16 × 0.14 × 0.11 mm

Data collection

  • Rigaku SCXmini 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.818, T max = 0.871
  • 9038 measured reflections
  • 1317 independent reflections
  • 1133 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.102
  • S = 1.11
  • 1317 reflections
  • 89 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041907/xu2614sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041907/xu2614Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Oxo-centered triangular Co complexes, Co33-O), have been considered as effective models for studying M—M interactions in metal clusters (Aromì et al., 2003; Fursova et al.,2007). We report here the synthesis and crystal structure of the title complex, (I). The complex is a typical oxo-centered carboxylate triangle, featuring exclusively, CoIII sites around a central µ3-oxide. Each edge of the triangle is further bridged by two pivalates with a terminal methanol ligand completing the coordination environment around each octahedral cobalt site (Fig. 1). The CoIII cation has site symmetry m. The central µ3-O lies in the -6 rotainversion axis. The coordinated methanol molecule is located on a crystallographic special position, the C and O atoms have site symmetry m. A similar oxo-centered cobalt(III) triangle has been reported for acetate (Beattie et al., 1996). The O—H···Cl hydrogen bond between the Cl ion serving as a trifurcated acceptor and hydroxyl of the coordinated methanol molecule as donor link molecules into two-dimensional hydrogen-bonded networks (Fig. 2).

Experimental

Hydrochloric acid (0.01 mmol) was added with constant stirring to a methanol solution (15 ml) containing Co(OOCC(CH3)3)2.4H2O (0.5 mmol), then filtered off. After a few days, red well shaped single crystals in the form of rectangular blocks deposited in the mother liquid. They were separated off, washed with cold methanol and dried in air at room temperature.

Refinement

H atoms of the methyl groups were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.96 Å, Uiso(H) = 1.2Ueq(C). The hydride H3D was refined isotropically.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity [symmetry codes: (A) x, y, -z + 1/2; (B) -y + 1, x-y + 1, z; (C) -x + ...
Fig. 2.
Crystal packing of the compound (I). The tertbutyl methyl groups and H atoms, except for those of the methanol ligands, have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

Crystal data

[Co3(C5H9O2)6O(CH4O)3]ClDx = 1.424 Mg m3
Mr = 931.10Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mCell parameters from 1832 reflections
Hall symbol: -P 6cθ = 2.8–25.3°
a = 10.4868 (15) ŵ = 1.26 mm1
c = 22.794 (5) ÅT = 293 K
V = 2170.9 (6) Å3Block, red
Z = 20.16 × 0.14 × 0.11 mm
F(000) = 980

Data collection

Rigaku SCXmini 1K CCD area-detector diffractometer1317 independent reflections
Radiation source: fine-focus sealed tube1133 reflections with I > 2σ(I)
graphiteRint = 0.046
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 1.8°
thin–slice ω scansh = −12→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.818, Tmax = 0.871l = −23→26
9038 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.11w = 1/[σ2(Fo2) + (0.0515P)2 + 1.7379P] where P = (Fo2 + 2Fc2)/3
1317 reflections(Δ/σ)max < 0.001
89 parametersΔρmax = 0.40 e Å3
1 restraintΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.51834 (5)0.84488 (5)0.25000.0226 (2)
Cl11.00001.00000.25000.0400 (5)
O40.33330.66670.25000.0196 (9)
O30.7249 (3)1.0326 (3)0.25000.0325 (7)
O20.6044 (2)0.7791 (2)0.18650 (10)0.0401 (6)
O10.4642 (2)0.9451 (2)0.18684 (9)0.0343 (5)
C10.3430 (3)0.9136 (3)0.16434 (12)0.0249 (6)
C20.3400 (3)0.9828 (3)0.10576 (13)0.0303 (7)
C30.2450 (4)1.0559 (4)0.11139 (17)0.0530 (10)
H3A0.14730.98380.12340.079*
H3B0.24081.09660.07420.079*
H3C0.28761.13310.14010.079*
C40.4953 (4)1.0946 (4)0.08584 (16)0.0508 (9)
H4B0.55281.04700.08210.076*
H4C0.54021.17230.11430.076*
H4D0.49081.13510.04860.076*
C60.7597 (6)1.1820 (5)0.25000.0530 (14)
H6A0.86471.24500.25000.080*
H6B0.71901.20100.28440.080*0.50
H6C0.71901.20100.21560.080*0.50
C50.2695 (5)0.8587 (5)0.06128 (16)0.0605 (11)
H5A0.32840.81260.05740.091*
H5B0.26300.89770.02400.091*
H5C0.17260.78730.07430.091*
H3D0.801 (5)1.016 (7)0.25000.08 (2)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0220 (3)0.0214 (3)0.0235 (3)0.0101 (2)0.0000.000
Cl10.0312 (6)0.0312 (6)0.0575 (13)0.0156 (3)0.0000.000
O40.0184 (13)0.0184 (13)0.022 (2)0.0092 (7)0.0000.000
O30.0204 (14)0.0222 (14)0.0514 (19)0.0081 (12)0.0000.000
O20.0346 (12)0.0285 (11)0.0463 (14)0.0076 (9)0.0183 (10)−0.0086 (10)
O10.0280 (11)0.0297 (11)0.0382 (13)0.0091 (9)−0.0056 (9)0.0128 (9)
C10.0303 (15)0.0219 (13)0.0251 (15)0.0150 (11)−0.0001 (12)0.0010 (11)
C20.0311 (16)0.0334 (15)0.0274 (16)0.0170 (13)0.0008 (12)0.0073 (12)
C30.061 (2)0.068 (2)0.049 (2)0.047 (2)0.0104 (18)0.0244 (19)
C40.045 (2)0.057 (2)0.046 (2)0.0223 (17)0.0121 (17)0.0272 (18)
C60.052 (3)0.028 (2)0.067 (4)0.011 (2)0.0000.000
C50.081 (3)0.064 (2)0.032 (2)0.032 (2)−0.0127 (19)−0.0090 (18)

Geometric parameters (Å, °)

Co1—O41.9055 (5)C2—C51.519 (5)
Co1—O2i2.002 (2)C2—C41.524 (4)
Co1—O22.002 (2)C2—C31.537 (4)
Co1—O1i2.0244 (19)C3—H3A0.9600
Co1—O12.0244 (19)C3—H3B0.9600
Co1—O32.074 (3)C3—H3C0.9600
Cl1—Cl10.0000C4—H4B0.9600
O4—Co1ii1.9055 (6)C4—H4C0.9600
O4—Co1iii1.9055 (6)C4—H4D0.9600
O3—C61.420 (5)C6—H6A0.9600
O3—H3D0.90 (2)C6—H6B0.9600
O2—C1iii1.252 (3)C6—H6C0.9600
O1—C11.251 (3)C5—H5A0.9600
C1—O2ii1.252 (3)C5—H5B0.9600
C1—C21.528 (4)C5—H5C0.9600
O4—Co1—O2i94.33 (6)C4—C2—C1111.0 (2)
O4—Co1—O294.33 (6)C5—C2—C3108.9 (3)
O2i—Co1—O292.60 (15)C4—C2—C3110.5 (3)
O4—Co1—O1i95.56 (6)C1—C2—C3109.7 (3)
O2i—Co1—O1i87.52 (10)C2—C3—H3A109.5
O2—Co1—O1i170.07 (9)C2—C3—H3B109.5
O4—Co1—O195.56 (6)H3A—C3—H3B109.5
O2i—Co1—O1170.07 (9)C2—C3—H3C109.5
O2—Co1—O187.52 (10)H3A—C3—H3C109.5
O1i—Co1—O190.66 (13)H3B—C3—H3C109.5
O4—Co1—O3177.12 (8)C2—C4—H4B109.5
O2i—Co1—O383.69 (8)C2—C4—H4C109.5
O2—Co1—O383.69 (8)H4B—C4—H4C109.5
O1i—Co1—O386.46 (8)C2—C4—H4D109.5
O1—Co1—O386.46 (8)H4B—C4—H4D109.5
Co1ii—O4—Co1120.0H4C—C4—H4D109.5
Co1ii—O4—Co1iii120.0O3—C6—H6A109.5
Co1—O4—Co1iii120.0O3—C6—H6B109.5
C6—O3—Co1128.1 (3)H6A—C6—H6B109.5
C6—O3—H3D117 (4)O3—C6—H6C109.5
Co1—O3—H3D115 (4)H6A—C6—H6C109.5
C1iii—O2—Co1134.27 (18)H6B—C6—H6C109.5
C1—O1—Co1131.72 (18)C2—C5—H5A109.5
O1—C1—O2ii123.9 (3)C2—C5—H5B109.5
O1—C1—C2119.5 (2)H5A—C5—H5B109.5
O2ii—C1—C2116.6 (2)C2—C5—H5C109.5
C5—C2—C4109.6 (3)H5A—C5—H5C109.5
C5—C2—C1107.0 (3)H5B—C5—H5C109.5
O2i—Co1—O4—Co1ii133.53 (7)O1—Co1—O2—C1iii−111.7 (3)
O2—Co1—O4—Co1ii−133.53 (7)O3—Co1—O2—C1iii161.6 (3)
O1i—Co1—O4—Co1ii45.60 (6)O4—Co1—O1—C112.6 (3)
O1—Co1—O4—Co1ii−45.60 (6)O2—Co1—O1—C1106.7 (3)
O2i—Co1—O4—Co1iii−46.47 (7)O1i—Co1—O1—C1−83.1 (3)
O2—Co1—O4—Co1iii46.47 (7)O3—Co1—O1—C1−169.5 (3)
O1i—Co1—O4—Co1iii−134.40 (6)Co1—O1—C1—O2ii16.6 (4)
O1—Co1—O4—Co1iii134.40 (6)Co1—O1—C1—C2−162.2 (2)
O2i—Co1—O3—C6−133.34 (7)O1—C1—C2—C5114.9 (3)
O2—Co1—O3—C6133.34 (7)O2ii—C1—C2—C5−64.0 (3)
O1i—Co1—O3—C6−45.44 (6)O1—C1—C2—C4−4.6 (4)
O1—Co1—O3—C645.44 (6)O2ii—C1—C2—C4176.5 (3)
O4—Co1—O2—C1iii−16.3 (3)O1—C1—C2—C3−127.0 (3)
O2i—Co1—O2—C1iii78.2 (3)O2ii—C1—C2—C354.0 (4)

Symmetry codes: (i) x, y, −z+1/2; (ii) −y+1, xy+1, z; (iii) −x+y, −x+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3D···Cl10.90 (2)2.17 (2)3.070 (3)175 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2614).

References

  • Aromì, G., Batsanov, A. S., Christian, P., Helliwell, M., Parkin, A., Parsons, S., Smith, A. A., Timco, G. A. & Winpenny, R. E. P. (2003). Chem. Eur. J.9, 5142–5161. [PubMed]
  • Beattie, J. K., Hambley, T. W., Kleptko, J. A., Masters, A. F. & Turner, P. (1996). Polyhedron15, 2141–2150.
  • Fursova, E., Kuznetsova, O., Ovcharenko, V., Romanenko, G., Ikorskii, V., Eremenko, I. & Sidorov, A. (2007). Polyhedron, 26, 2079–2088.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography