PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1415.
Published online 2009 October 23. doi:  10.1107/S1600536809042767
PMCID: PMC2971249

[(Z)-Isopropoxy(4-nitrophenylimino)methanethiolato-κS](tricyclo­hexyl­phosphine-κP)gold(I)

Abstract

In the title compound, [Au(C10H11N2O3S)(C18H33P)], the gold(I) atom is linearly coordinated within a SP donor set. The distortion from linearity [S—Au—P = 177.54 (3)°] can be traced to an intra­molecular Au(...)O contact of 3.009 (3) Å. In the crystal, layers of mol­ecules are stabilized by a combination of C—H(...)O and C—H(...)π inter­actions.

Related literature

For structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1415-scheme1.jpg

Experimental

Crystal data

  • [Au(C10H11N2O3S)(C18H33P)]
  • M r = 716.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1415-efi1.jpg
  • a = 9.0965 (3) Å
  • b = 13.1025 (4) Å
  • c = 13.2541 (5) Å
  • α = 80.030 (1)°
  • β = 75.170 (2)°
  • γ = 89.215 (1)°
  • V = 1503.26 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.05 mm−1
  • T = 223 K
  • 0.36 × 0.26 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.508, T max = 1
  • 10654 measured reflections
  • 6851 independent reflections
  • 6092 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.072
  • S = 1.00
  • 6851 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 1.33 e Å−3
  • Δρmin = −1.04 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042767/hb5149sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042767/hb5149Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000–213–112) is thanked for support.

supplementary crystallographic information

Comment

The structure of the title compound, (I), was determined as a part of an on-going study of the structural systematics, including luminescence properties of molecules related to the general formula R3PAu[SC(OR')\d NR''] for R, R' and R'' = alkyl and aryl (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The Au atoms in (I) exists in the expected linear geometry defined by S and P atoms (Au—S = 2.3116 (9) Å and Au—P = 2.2655 (9) Å), Fig. 1, with the deviation from the ideal 180° angle (S1—Au—P1 = 177.54 (3)°) being related to the close approach of the O1 atom, 3.009 (3) Å; this is the normally observed orientation of the carbonimidothioate anion when coordinated to phosphinegold(I) centres. The conformation about the C1N1 (1.275 (5) Å) is Z and the C1—S1 distance (1.739 (4) Å) indicates the ligand is functioning as a thiolate.

The formation of C—H···O and C—H···π interactions, Table 1, lead to supramolecular arrays in the ab plane, Fig. 2. These stack to consolidate the crystal packing.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Cy3PAuCl and i-PrOC(S)N(H)C6H4NO2-4 in the presence of base (Hall et al., 1993). Yellow plates of (I) were obtained from the layering of ethanol on a dichloromethane solution of (I); m. pt. 434–436 K. Analysis for C28H44AuN2O3PS: found (calculated): C: 46.84 (46.93); H: 6.01 (6.19); N: 4.05 (3.91); S: 4.52 (4.47). IR (cm-1): ν(C—S) 1109 s, 875m; ν(C—N) 1590 s; ν(C—O) 1150m. 31P{1H} NMR: δ 56.8 p.p.m.

Refinement

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.33 and 1.04 e Å-3, respectively, were located 0.89 Å and 1.35 Å from the Au atom.

Figures

Fig. 1.
Molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
Fig. 2.
Supramolecular layer formation in (I) mediated by C—H···O and C—H···π contacts (orange and purple dashed lines, respectively). Colour code: Au, orange; S, yellow; P, pink; O, red; ...

Crystal data

[Au(C10H11N2O3S)(C18H33P)]Z = 2
Mr = 716.65F(000) = 720
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.0965 (3) ÅCell parameters from 5138 reflections
b = 13.1025 (4) Åθ = 2.3–29.6°
c = 13.2541 (5) ŵ = 5.05 mm1
α = 80.030 (1)°T = 223 K
β = 75.170 (2)°Plate, yellow
γ = 89.215 (1)°0.36 × 0.26 × 0.05 mm
V = 1503.26 (9) Å3

Data collection

Bruker SMART CCD diffractometer6851 independent reflections
Radiation source: fine-focus sealed tube6092 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→11
Tmin = 0.508, Tmax = 1k = −17→16
10654 measured reflectionsl = −12→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0212P)2] where P = (Fo2 + 2Fc2)/3
6851 reflections(Δ/σ)max = 0.002
325 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = −1.04 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au0.773135 (15)0.951953 (10)0.686272 (11)0.02645 (6)
S10.67339 (12)0.78988 (7)0.68902 (8)0.0338 (2)
P10.86330 (10)1.11387 (7)0.68006 (7)0.02323 (18)
O10.8219 (3)0.7604 (2)0.8343 (2)0.0354 (6)
O20.3463 (5)0.3639 (3)0.5924 (3)0.0756 (12)
O30.1780 (5)0.3537 (3)0.7411 (3)0.0799 (13)
N10.6794 (4)0.6193 (2)0.8345 (3)0.0347 (7)
N20.3021 (5)0.3830 (3)0.6818 (3)0.0503 (10)
C10.7256 (4)0.7124 (3)0.7938 (3)0.0290 (8)
C20.5837 (4)0.5653 (3)0.7926 (3)0.0282 (8)
C30.6297 (5)0.5421 (3)0.6909 (3)0.0366 (9)
H30.72370.56860.64600.044*
C40.5395 (5)0.4810 (3)0.6555 (3)0.0383 (9)
H40.57230.46430.58720.046*
C50.4013 (5)0.4446 (3)0.7205 (3)0.0333 (8)
C60.3506 (5)0.4670 (3)0.8218 (3)0.0363 (9)
H60.25480.44210.86540.044*
C70.4444 (5)0.5269 (3)0.8573 (3)0.0344 (9)
H70.41280.54170.92640.041*
C80.8622 (5)0.7039 (4)0.9279 (3)0.0417 (10)
H80.77220.66290.97480.050*
C90.9881 (7)0.6324 (5)0.8957 (5)0.0675 (15)
H9A0.95390.58150.86080.101*
H9B1.01720.59730.95800.101*
H9C1.07490.67190.84720.101*
C100.9037 (6)0.7859 (4)0.9832 (4)0.0558 (13)
H10A0.81750.82971.00170.084*
H10B0.98950.82780.93650.084*
H10C0.93080.75321.04710.084*
C110.8713 (4)1.1952 (3)0.5512 (3)0.0278 (8)
H110.94571.16340.49790.033*
C120.9286 (5)1.3074 (3)0.5386 (3)0.0376 (9)
H12A0.85851.34290.58970.045*
H12B1.02881.30770.55340.045*
C130.9401 (5)1.3650 (3)0.4259 (3)0.0462 (11)
H13A0.97081.43760.42050.055*
H13B1.01881.33400.37580.055*
C140.7909 (6)1.3610 (4)0.3959 (3)0.0499 (12)
H14A0.80481.39450.32190.060*
H14B0.71491.39910.44050.060*
C150.7342 (6)1.2499 (4)0.4098 (4)0.0522 (12)
H15A0.80501.21400.35960.063*
H15B0.63491.24960.39370.063*
C160.7194 (5)1.1922 (4)0.5219 (3)0.0421 (10)
H16A0.68711.12000.52730.050*
H16B0.64161.22400.57180.050*
C171.0588 (4)1.1123 (3)0.6950 (3)0.0273 (7)
H171.09011.18350.69830.033*
C181.0682 (5)1.0405 (4)0.7969 (4)0.0432 (10)
H18A1.00121.06480.85800.052*
H18B1.03350.97030.79590.052*
C191.2311 (5)1.0382 (4)0.8079 (4)0.0628 (17)
H19A1.26331.10750.81380.075*
H19B1.23550.99050.87270.075*
C201.3384 (6)1.0032 (5)0.7126 (5)0.077 (2)
H20A1.44301.00530.71950.092*
H20B1.31190.93150.71050.092*
C211.3287 (5)1.0722 (5)0.6107 (5)0.0682 (18)
H21A1.39431.04580.55040.082*
H21B1.36601.14230.60960.082*
C221.1665 (4)1.0770 (4)0.5990 (4)0.0429 (10)
H22A1.13271.00830.59230.052*
H22B1.16351.12550.53440.052*
C230.7423 (4)1.1798 (3)0.7827 (3)0.0289 (8)
H230.66841.21840.74850.035*
C240.6475 (5)1.1041 (4)0.8751 (4)0.0501 (12)
H24A0.71511.06030.90960.060*
H24B0.58651.05900.84860.060*
C250.5415 (6)1.1597 (4)0.9567 (4)0.0581 (14)
H25A0.46421.19540.92520.070*
H25B0.48921.10831.01800.070*
C260.6273 (7)1.2368 (4)0.9930 (4)0.0589 (14)
H26A0.69691.20041.03130.071*
H26B0.55551.27361.04180.071*
C270.7166 (5)1.3140 (3)0.9004 (4)0.0456 (11)
H27A0.77491.36140.92620.055*
H27B0.64591.35510.86650.055*
C280.8249 (4)1.2610 (3)0.8189 (3)0.0333 (8)
H28A0.87421.31320.75750.040*
H28B0.90441.22800.84990.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.02825 (8)0.02106 (8)0.03289 (9)−0.00194 (5)−0.01194 (6)−0.00612 (6)
S10.0446 (6)0.0230 (5)0.0409 (5)−0.0047 (4)−0.0243 (5)−0.0045 (4)
P10.0221 (4)0.0206 (4)0.0284 (4)−0.0012 (3)−0.0088 (4)−0.0046 (4)
O10.0460 (17)0.0296 (15)0.0351 (14)−0.0112 (12)−0.0207 (13)−0.0016 (12)
O20.096 (3)0.075 (3)0.065 (2)−0.028 (2)−0.024 (2)−0.030 (2)
O30.068 (3)0.089 (3)0.081 (3)−0.049 (2)−0.012 (2)−0.019 (2)
N10.045 (2)0.0258 (17)0.0353 (18)−0.0082 (14)−0.0147 (15)−0.0026 (14)
N20.058 (3)0.033 (2)0.061 (3)−0.0156 (18)−0.022 (2)−0.0011 (19)
C10.032 (2)0.0285 (19)0.0291 (18)−0.0006 (15)−0.0101 (15)−0.0085 (15)
C20.034 (2)0.0182 (17)0.0319 (19)−0.0004 (14)−0.0105 (16)−0.0006 (14)
C30.031 (2)0.034 (2)0.041 (2)−0.0088 (17)−0.0006 (17)−0.0101 (18)
C40.042 (2)0.034 (2)0.038 (2)−0.0010 (18)−0.0057 (18)−0.0118 (18)
C50.037 (2)0.0215 (19)0.043 (2)−0.0033 (16)−0.0150 (18)−0.0032 (16)
C60.035 (2)0.031 (2)0.038 (2)−0.0079 (17)−0.0078 (17)0.0016 (17)
C70.038 (2)0.033 (2)0.0283 (19)−0.0026 (17)−0.0027 (16)−0.0038 (16)
C80.050 (3)0.049 (3)0.028 (2)−0.011 (2)−0.0199 (19)0.0050 (18)
C90.076 (4)0.063 (4)0.070 (4)0.017 (3)−0.037 (3)−0.005 (3)
C100.067 (3)0.065 (3)0.045 (3)−0.012 (3)−0.030 (2)−0.013 (2)
C110.0291 (19)0.0265 (19)0.0289 (18)−0.0001 (15)−0.0096 (15)−0.0042 (15)
C120.043 (2)0.030 (2)0.040 (2)−0.0059 (17)−0.0148 (19)0.0032 (17)
C130.051 (3)0.035 (2)0.046 (2)0.001 (2)−0.009 (2)0.004 (2)
C140.062 (3)0.051 (3)0.032 (2)0.024 (2)−0.009 (2)−0.001 (2)
C150.052 (3)0.067 (3)0.045 (3)0.012 (2)−0.028 (2)−0.005 (2)
C160.041 (2)0.047 (3)0.042 (2)−0.002 (2)−0.021 (2)−0.004 (2)
C170.0212 (17)0.0267 (18)0.038 (2)0.0028 (14)−0.0116 (15)−0.0118 (16)
C180.046 (3)0.040 (2)0.051 (3)0.0103 (19)−0.025 (2)−0.009 (2)
C190.060 (4)0.069 (4)0.084 (4)0.031 (3)−0.053 (3)−0.033 (3)
C200.047 (3)0.089 (4)0.128 (5)0.040 (3)−0.056 (3)−0.066 (4)
C210.024 (2)0.097 (5)0.100 (4)0.016 (2)−0.014 (3)−0.062 (4)
C220.027 (2)0.059 (3)0.049 (2)0.0071 (19)−0.0097 (18)−0.026 (2)
C230.0272 (19)0.0277 (19)0.0325 (19)0.0010 (15)−0.0063 (15)−0.0096 (15)
C240.048 (3)0.042 (3)0.049 (3)−0.014 (2)0.012 (2)−0.014 (2)
C250.050 (3)0.058 (3)0.052 (3)−0.010 (2)0.019 (2)−0.018 (2)
C260.080 (4)0.046 (3)0.041 (3)0.004 (3)0.009 (2)−0.018 (2)
C270.048 (3)0.033 (2)0.055 (3)0.0039 (19)−0.005 (2)−0.018 (2)
C280.030 (2)0.035 (2)0.037 (2)−0.0027 (16)−0.0066 (16)−0.0150 (17)

Geometric parameters (Å, °)

Au—P12.2655 (9)C14—H14A0.9800
Au—S12.3116 (9)C14—H14B0.9800
S1—C11.739 (4)C15—C161.520 (6)
P1—C111.835 (4)C15—H15A0.9800
P1—C171.839 (3)C15—H15B0.9800
P1—C231.850 (4)C16—H16A0.9800
O1—C11.350 (4)C16—H16B0.9800
O1—C81.459 (5)C17—C181.527 (6)
O2—N21.219 (5)C17—C221.532 (5)
O3—N21.222 (5)C17—H170.9900
N1—C11.275 (5)C18—C191.525 (6)
N1—C21.403 (5)C18—H18A0.9800
N2—C51.459 (5)C18—H18B0.9800
C2—C71.380 (5)C19—C201.522 (7)
C2—C31.390 (5)C19—H19A0.9800
C3—C41.371 (5)C19—H19B0.9800
C3—H30.9400C20—C211.512 (9)
C4—C51.368 (6)C20—H20A0.9800
C4—H40.9400C20—H20B0.9800
C5—C61.384 (6)C21—C221.522 (6)
C6—C71.386 (5)C21—H21A0.9800
C6—H60.9400C21—H21B0.9800
C7—H70.9400C22—H22A0.9800
C8—C91.493 (7)C22—H22B0.9800
C8—C101.504 (6)C23—C241.513 (6)
C8—H80.9900C23—C281.521 (5)
C9—H9A0.9700C23—H230.9900
C9—H9B0.9700C24—C251.533 (6)
C9—H9C0.9700C24—H24A0.9800
C10—H10A0.9700C24—H24B0.9800
C10—H10B0.9700C25—C261.497 (7)
C10—H10C0.9700C25—H25A0.9800
C11—C161.531 (5)C25—H25B0.9800
C11—C121.534 (5)C26—C271.506 (7)
C11—H110.9900C26—H26A0.9800
C12—C131.531 (6)C26—H26B0.9800
C12—H12A0.9800C27—C281.521 (5)
C12—H12B0.9800C27—H27A0.9800
C13—C141.513 (6)C27—H27B0.9800
C13—H13A0.9800C28—H28A0.9800
C13—H13B0.9800C28—H28B0.9800
C14—C151.516 (7)
P1—Au—S1177.54 (3)C16—C15—H15B109.3
C1—S1—Au103.52 (12)H15A—C15—H15B107.9
C11—P1—C17106.11 (17)C15—C16—C11110.6 (4)
C11—P1—C23107.07 (17)C15—C16—H16A109.5
C17—P1—C23108.78 (16)C11—C16—H16A109.5
C11—P1—Au110.76 (12)C15—C16—H16B109.5
C17—P1—Au111.51 (12)C11—C16—H16B109.5
C23—P1—Au112.32 (12)H16A—C16—H16B108.1
C1—O1—C8117.5 (3)C18—C17—C22110.1 (3)
C1—N1—C2121.7 (3)C18—C17—P1110.8 (3)
O2—N2—O3123.4 (4)C22—C17—P1109.6 (2)
O2—N2—C5118.7 (4)C18—C17—H17108.8
O3—N2—C5117.9 (4)C22—C17—H17108.8
N1—C1—O1119.8 (3)P1—C17—H17108.8
N1—C1—S1126.3 (3)C19—C18—C17110.6 (4)
O1—C1—S1113.8 (3)C19—C18—H18A109.5
C7—C2—C3119.0 (3)C17—C18—H18A109.5
C7—C2—N1118.7 (3)C19—C18—H18B109.5
C3—C2—N1122.0 (4)C17—C18—H18B109.5
C4—C3—C2120.8 (4)H18A—C18—H18B108.1
C4—C3—H3119.6C20—C19—C18110.7 (4)
C2—C3—H3119.6C20—C19—H19A109.5
C5—C4—C3119.3 (4)C18—C19—H19A109.5
C5—C4—H4120.4C20—C19—H19B109.5
C3—C4—H4120.4C18—C19—H19B109.5
C4—C5—C6121.7 (4)H19A—C19—H19B108.1
C4—C5—N2119.6 (4)C21—C20—C19110.8 (4)
C6—C5—N2118.7 (4)C21—C20—H20A109.5
C5—C6—C7118.4 (4)C19—C20—H20A109.5
C5—C6—H6120.8C21—C20—H20B109.5
C7—C6—H6120.8C19—C20—H20B109.5
C2—C7—C6120.8 (4)H20A—C20—H20B108.1
C2—C7—H7119.6C20—C21—C22111.7 (5)
C6—C7—H7119.6C20—C21—H21A109.3
O1—C8—C9110.0 (4)C22—C21—H21A109.3
O1—C8—C10105.3 (4)C20—C21—H21B109.3
C9—C8—C10113.7 (4)C22—C21—H21B109.3
O1—C8—H8109.3H21A—C21—H21B107.9
C9—C8—H8109.3C21—C22—C17110.8 (3)
C10—C8—H8109.3C21—C22—H22A109.5
C8—C9—H9A109.5C17—C22—H22A109.5
C8—C9—H9B109.5C21—C22—H22B109.5
H9A—C9—H9B109.5C17—C22—H22B109.5
C8—C9—H9C109.5H22A—C22—H22B108.1
H9A—C9—H9C109.5C24—C23—C28112.1 (3)
H9B—C9—H9C109.5C24—C23—P1112.4 (3)
C8—C10—H10A109.5C28—C23—P1115.0 (3)
C8—C10—H10B109.5C24—C23—H23105.4
H10A—C10—H10B109.5C28—C23—H23105.4
C8—C10—H10C109.5P1—C23—H23105.4
H10A—C10—H10C109.5C23—C24—C25111.9 (4)
H10B—C10—H10C109.5C23—C24—H24A109.2
C16—C11—C12110.8 (3)C25—C24—H24A109.2
C16—C11—P1111.6 (3)C23—C24—H24B109.2
C12—C11—P1115.3 (3)C25—C24—H24B109.2
C16—C11—H11106.1H24A—C24—H24B107.9
C12—C11—H11106.1C26—C25—C24111.6 (4)
P1—C11—H11106.1C26—C25—H25A109.3
C13—C12—C11110.3 (3)C24—C25—H25A109.3
C13—C12—H12A109.6C26—C25—H25B109.3
C11—C12—H12A109.6C24—C25—H25B109.3
C13—C12—H12B109.6H25A—C25—H25B108.0
C11—C12—H12B109.6C25—C26—C27111.1 (4)
H12A—C12—H12B108.1C25—C26—H26A109.4
C14—C13—C12112.0 (4)C27—C26—H26A109.4
C14—C13—H13A109.2C25—C26—H26B109.4
C12—C13—H13A109.2C27—C26—H26B109.4
C14—C13—H13B109.2H26A—C26—H26B108.0
C12—C13—H13B109.2C26—C27—C28111.9 (4)
H13A—C13—H13B107.9C26—C27—H27A109.2
C13—C14—C15110.9 (4)C28—C27—H27A109.2
C13—C14—H14A109.5C26—C27—H27B109.2
C15—C14—H14A109.5C28—C27—H27B109.2
C13—C14—H14B109.5H27A—C27—H27B107.9
C15—C14—H14B109.5C23—C28—C27111.6 (3)
H14A—C14—H14B108.0C23—C28—H28A109.3
C14—C15—C16111.7 (4)C27—C28—H28A109.3
C14—C15—H15A109.3C23—C28—H28B109.3
C16—C15—H15A109.3C27—C28—H28B109.3
C14—C15—H15B109.3H28A—C28—H28B108.0
C2—N1—C1—O1−177.7 (3)C12—C13—C14—C15−55.3 (5)
C2—N1—C1—S14.0 (6)C13—C14—C15—C1655.8 (5)
C8—O1—C1—N1−3.2 (6)C14—C15—C16—C11−56.6 (5)
C8—O1—C1—S1175.2 (3)C12—C11—C16—C1556.6 (5)
Au—S1—C1—N1170.3 (3)P1—C11—C16—C15−173.5 (3)
Au—S1—C1—O1−8.0 (3)C11—P1—C17—C18−176.2 (3)
C1—N1—C2—C7−121.8 (4)C23—P1—C17—C1868.9 (3)
C1—N1—C2—C363.4 (5)Au—P1—C17—C18−55.5 (3)
C7—C2—C3—C4−0.8 (6)C11—P1—C17—C22−54.5 (3)
N1—C2—C3—C4173.9 (4)C23—P1—C17—C22−169.4 (3)
C2—C3—C4—C51.4 (6)Au—P1—C17—C2266.2 (3)
C3—C4—C5—C6−0.6 (6)C22—C17—C18—C1957.6 (4)
C3—C4—C5—N2177.6 (4)P1—C17—C18—C19179.0 (3)
O2—N2—C5—C41.2 (6)C17—C18—C19—C20−57.8 (6)
O3—N2—C5—C4−178.3 (4)C18—C19—C20—C2156.5 (6)
O2—N2—C5—C6179.4 (4)C19—C20—C21—C22−55.8 (6)
O3—N2—C5—C6−0.1 (6)C20—C21—C22—C1755.8 (6)
C4—C5—C6—C7−0.8 (6)C18—C17—C22—C21−56.3 (5)
N2—C5—C6—C7−179.0 (4)P1—C17—C22—C21−178.5 (4)
C3—C2—C7—C6−0.6 (6)C11—P1—C23—C24144.4 (3)
N1—C2—C7—C6−175.5 (4)C17—P1—C23—C24−101.3 (3)
C5—C6—C7—C21.4 (6)Au—P1—C23—C2422.6 (3)
C1—O1—C8—C982.9 (5)C11—P1—C23—C28−85.7 (3)
C1—O1—C8—C10−154.3 (4)C17—P1—C23—C2828.6 (3)
C17—P1—C11—C16172.7 (3)Au—P1—C23—C28152.5 (3)
C23—P1—C11—C16−71.2 (3)C28—C23—C24—C2551.7 (6)
Au—P1—C11—C1651.6 (3)P1—C23—C24—C25−176.9 (4)
C17—P1—C11—C12−59.7 (3)C23—C24—C25—C26−53.9 (6)
C23—P1—C11—C1256.4 (3)C24—C25—C26—C2755.9 (6)
Au—P1—C11—C12179.1 (3)C25—C26—C27—C28−56.4 (6)
C16—C11—C12—C13−55.8 (5)C24—C23—C28—C27−51.9 (5)
P1—C11—C12—C13176.3 (3)P1—C23—C28—C27178.1 (3)
C11—C12—C13—C1455.5 (5)C26—C27—C28—C2354.2 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C17—H17···O3i0.992.583.558 (6)169
C27—H27b···Cg1ii0.982.813.778 (5)168

Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5149).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, U. S. A.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography