PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1482.
Published online 2009 October 31. doi:  10.1107/S160053680904464X
PMCID: PMC2971245

Poly[[[bis­(acetato-κO)copper(II)]-μ-1,4-diimidazol-1-ylbenzene-κ2 N 3:N 3′] dihydrate]

Abstract

In the title linear coordination polymer, {[Cu(C2H3O2)2(C12H10N4)]·2H2O}n, the CuII atom is coordinated by two N atoms from two different symmetry-related 1,4-diimidazol-1-ylbenzene (dib) ligands and two carboxyl­ate O atoms from two acetate ligands in a square-planar geometry. The Cu atoms are linked by the dib ligands, forming an extended chain. These chains are linked by O—H(...)O hydrogen bonds into a three-dimensional supra­molecular network. The CuII atom lies on a center of inversion.

Related literature

For the potential applications of crystalline materials with framework structures, see: Kitagawa & Kondo (1998 [triangle]). For copper complexes with the imidazole heterocycle, see: Huang et al. (2004 [triangle]); Masciocchi et al. (2001 [triangle]). For C—O bond lengths, see: Dong et al. (2009 [triangle]). For a related structure, see: Xie et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1482-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O2)2(C12H10N4)]·2H2O
  • M r = 427.90
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1482-efi1.jpg
  • a = 4.707 (2) Å
  • b = 9.444 (3) Å
  • c = 10.901 (5) Å
  • α = 72.569 (5)°
  • β = 82.956 (4)°
  • γ = 76.766 (5)°
  • V = 449.3 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.26 mm−1
  • T = 293 K
  • 0.24 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.752, T max = 0.864
  • 2248 measured reflections
  • 1562 independent reflections
  • 1530 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.096
  • S = 1.06
  • 1562 reflections
  • 125 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL .

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904464X/ng2675sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904464X/ng2675Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Construct Program of the Key Discipline of Hunan Province, the Hengyang Bureau of Science & Technology (grant No. 2009 K J29) and the Research Award Fund for Outstanding Young Teachers of Hunan Province (2008).

supplementary crystallographic information

Comment

Recently, a great deal of interest in transition metal complex assembly has been devoted to the development of rational synthetic routes to novel one-, two- and three-dimensional crystal frameworks, due to their potential applications in many areas (Kitagawa, et al., 1998). Particularly, copper complexes with the imidazole heterocycle have been investigated extensively to date (Huang, et al., 2004; Masciocchi et al., 2001). Furthermore, many crystal structures of copper(II) compounds with 4,4'-bipyridine have been determined so far. However, ligand 1,4-diimidazol-1-ylbenzene (dib) is similar to the 4,4'-bipyridine, only one structure of copper complex is known (Xie, et al., 2007). So we have recently prepared a new copper(II) coordination polymer, [Cu(dib)(CH3COO)2]n.2nH2O, (I), with 1,4-diimidazol-1-ylbenzene and copper acetate.

In the title compound, the central CuII ion is four-coordinated by two N atoms from two different dib ligands, two carboxylate O atoms from two acetate ligands in a square planar coordination geometry(Fig. 1). There is one free water molecule in the structure, stabilized by hydrogen bonds. The Cu—O distances are comparable to those found in other crystallographically characterized CuII complexes (Dong et al., 2009). The Cu atoms are linked by the dib ligands, forming an extended chain. These chains are further connected by O—H···O bonds (Table 2) to form a three-dimensional supramolecular architecture (Fig. 2).

Experimental

A mixture of Cu(CH3CO2)2.2H2O (0.040 g, 0.2 mmol), 1,4-diimidazol-1-ylbenzene (0.042 g, 0.2 mmol), and H2O (15 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor, which was heated at 433 K for 72 h and then it was cooled to room temperature. Block blue crystals of the title compound were collected.

Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding. The water H atoms found from Fourier difference maps were refined with restraints for O—H distances (0.8499–0.9046 Å) with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level.
Fig. 2.
Projection showing the three-dimensional structure formed by H-bonding interaction of the compound (I).

Crystal data

[Cu(C2H3O2)2(C12H10N4)]·2H2OZ = 1
Mr = 427.90F(000) = 221
Triclinic, P1Dx = 1.581 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 4.707 (2) ÅCell parameters from 2023 reflections
b = 9.444 (3) Åθ = 2.3–28.2°
c = 10.901 (5) ŵ = 1.26 mm1
α = 72.569 (5)°T = 293 K
β = 82.956 (4)°Block, blue
γ = 76.766 (5)°0.24 × 0.18 × 0.12 mm
V = 449.3 (3) Å3

Data collection

Bruker SMART APEXII CCD diffractometer1562 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −5→5
Tmin = 0.752, Tmax = 0.864k = −11→11
2248 measured reflectionsl = −10→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0497P)2 + 0.4024P] where P = (Fo2 + 2Fc2)/3
1562 reflections(Δ/σ)max = 0.001
125 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O20.6552 (9)0.2222 (4)0.7045 (4)0.0507 (10)
O1W0.7740 (10)−0.0100 (5)0.9321 (4)0.0573 (11)
H1WB0.77090.02850.99900.069*
H1WA0.73370.06380.86520.069*
Cu10.50000.50000.50000.0298 (3)
C10.3713 (15)0.0609 (6)0.6676 (7)0.0583 (16)
H1A0.5335−0.01540.65190.087*
H1B0.21850.07310.61220.087*
H1C0.29950.03070.75590.087*
C20.4695 (11)0.2091 (5)0.6405 (5)0.0376 (11)
C30.2141 (12)0.7070 (5)0.6631 (5)0.0386 (11)
H30.32490.77970.62210.046*
C40.0188 (11)0.7151 (5)0.7622 (5)0.0391 (11)
H4−0.03010.79280.80170.047*
C50.0373 (10)0.5061 (5)0.7114 (4)0.0331 (10)
H5−0.00060.41360.71160.040*
C6−0.4029 (12)0.6328 (6)0.9800 (5)0.0404 (12)
H6−0.33790.72250.96660.049*
C7−0.3994 (11)0.4103 (6)0.9189 (5)0.0398 (12)
H7−0.33170.34950.86400.048*
C8−0.3014 (10)0.5423 (5)0.8984 (4)0.0293 (9)
N10.2268 (9)0.5756 (4)0.6310 (4)0.0322 (9)
N2−0.0957 (8)0.5866 (4)0.7941 (4)0.0299 (8)
O10.3507 (8)0.3154 (4)0.5476 (3)0.0382 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O20.063 (3)0.041 (2)0.051 (2)−0.0131 (18)−0.007 (2)−0.0136 (18)
O1W0.071 (3)0.050 (2)0.049 (2)−0.014 (2)−0.007 (2)−0.0092 (18)
Cu10.0370 (5)0.0274 (5)0.0243 (5)−0.0070 (3)0.0054 (3)−0.0088 (3)
C10.072 (4)0.035 (3)0.068 (4)−0.021 (3)−0.001 (3)−0.010 (3)
C20.046 (3)0.031 (2)0.037 (3)−0.011 (2)0.014 (2)−0.016 (2)
C30.049 (3)0.032 (2)0.038 (3)−0.014 (2)0.012 (2)−0.015 (2)
C40.048 (3)0.032 (2)0.040 (3)−0.011 (2)0.012 (2)−0.018 (2)
C50.039 (3)0.031 (2)0.030 (2)−0.0069 (19)0.006 (2)−0.0133 (19)
C60.052 (3)0.034 (2)0.041 (3)−0.016 (2)0.014 (2)−0.019 (2)
C70.049 (3)0.038 (3)0.038 (3)−0.010 (2)0.014 (2)−0.024 (2)
C80.030 (2)0.033 (2)0.025 (2)−0.0040 (18)0.0030 (17)−0.0110 (18)
N10.039 (2)0.0294 (19)0.0279 (19)−0.0059 (16)0.0075 (16)−0.0112 (16)
N20.0329 (19)0.0298 (19)0.0269 (19)−0.0045 (15)0.0052 (15)−0.0119 (15)
O10.048 (2)0.0325 (17)0.0345 (18)−0.0127 (15)0.0089 (15)−0.0112 (15)

Geometric parameters (Å, °)

O2—C21.231 (6)C3—H30.9300
O1W—H1WB0.9046C4—N21.373 (6)
O1W—H1WA0.8499C4—H40.9300
Cu1—O11.932 (3)C5—N11.314 (6)
Cu1—O1i1.932 (3)C5—N21.355 (6)
Cu1—N11.986 (4)C5—H50.9300
Cu1—N1i1.986 (4)C6—C7ii1.379 (7)
C1—C21.509 (7)C6—C81.384 (6)
C1—H1A0.9600C6—H60.9300
C1—H1B0.9600C7—C81.374 (7)
C1—H1C0.9600C7—C6ii1.379 (7)
C2—O11.273 (6)C7—H70.9300
C3—C41.338 (7)C8—N21.427 (6)
C3—N11.374 (6)
H1WB—O1W—H1WA107.9N2—C4—H4126.6
O1—Cu1—O1i180.000 (1)N1—C5—N2111.3 (4)
O1—Cu1—N190.62 (15)N1—C5—H5124.4
O1i—Cu1—N189.38 (15)N2—C5—H5124.4
O1—Cu1—N1i89.38 (15)C7ii—C6—C8119.8 (5)
O1i—Cu1—N1i90.62 (15)C7ii—C6—H6120.1
N1—Cu1—N1i180.000 (1)C8—C6—H6120.1
C2—C1—H1A109.5C8—C7—C6ii120.6 (4)
C2—C1—H1B109.5C8—C7—H7119.7
H1A—C1—H1B109.5C6ii—C7—H7119.7
C2—C1—H1C109.5C7—C8—C6119.6 (4)
H1A—C1—H1C109.5C7—C8—N2120.6 (4)
H1B—C1—H1C109.5C6—C8—N2119.8 (4)
O2—C2—O1123.7 (5)C5—N1—C3105.6 (4)
O2—C2—C1120.9 (5)C5—N1—Cu1127.6 (3)
O1—C2—C1115.3 (5)C3—N1—Cu1126.6 (3)
C4—C3—N1109.9 (4)C5—N2—C4106.4 (4)
C4—C3—H3125.0C5—N2—C8126.7 (4)
N1—C3—H3125.0C4—N2—C8126.7 (4)
C3—C4—N2106.8 (4)C2—O1—Cu1116.1 (3)
C3—C4—H4126.6
N1—C3—C4—N20.0 (6)N1—C5—N2—C40.3 (6)
C6ii—C7—C8—C6−0.2 (9)N1—C5—N2—C8−176.4 (4)
C6ii—C7—C8—N2179.7 (5)C3—C4—N2—C5−0.2 (6)
C7ii—C6—C8—C70.2 (9)C3—C4—N2—C8176.5 (5)
C7ii—C6—C8—N2−179.7 (5)C7—C8—N2—C5−4.4 (7)
N2—C5—N1—C3−0.3 (6)C6—C8—N2—C5175.5 (5)
N2—C5—N1—Cu1175.0 (3)C7—C8—N2—C4179.6 (5)
C4—C3—N1—C50.1 (6)C6—C8—N2—C4−0.5 (7)
C4—C3—N1—Cu1−175.2 (4)O2—C2—O1—Cu14.9 (6)
O1—Cu1—N1—C51.0 (4)C1—C2—O1—Cu1−174.2 (4)
O1i—Cu1—N1—C5−179.0 (4)N1—Cu1—O1—C2−86.6 (3)
O1—Cu1—N1—C3175.3 (4)N1i—Cu1—O1—C293.4 (3)
O1i—Cu1—N1—C3−4.7 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x−1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O20.851.942.792 (6)176
O1W—H1WB···O1Wiii0.902.312.807 (7)114

Symmetry codes: (iii) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2675).

References

  • Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dong, H., Bi, W. & Zhu, H. (2009). Asian J. Chem.21, 5598–5602.
  • Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101. [PubMed]
  • Kitagawa, S. & Kondo, M. (1998). Bull. Chem. Soc. Jpn, 71, 1739–1753.
  • Masciocchi, N., Bruni, S., Cariati, E., Cariati, F., Galli, S. & Sironi, A. (2001). Inorg. Chem.40, 5897–5905. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xie, J., Chen, X., Liu, G. X. & Sun, W. Y. (2007). Chin. J. Inorg. Chem.23, 1295–1298.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography