PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2844.
Published online 2009 October 23. doi:  10.1107/S1600536809041312
PMCID: PMC2971241

N,N′-Di-8-quinolyl-2,2′-(o-phenyl­ene­di­oxy)diacetamide

Abstract

In the title compound, C28H22N4O4, the mol­ecule lies on a crystallographic twofold axis. The quinoline ring is essentially planar (give max or rms deviation 0.0186 Å), and the dihedral angle between the quinoline ring and the central benzene ring is 19.1 (4)°. Intra­molecular N—H(...)(N,O) and C—H(...)O hydrogen bonds contribute to the formation of the roughly planar configuration. The crystal packing is stabilized by inter­molecular C—H(...)O hydrogen bonds, and weak π–π inter­actions between the pyridine rings and central benzene rings of the neighboring mol­ecules [centroid–centroid separation = 3.9009 (6) Å].

Related literature

For background to the applications of amide-type acyclic polyethers, see: Guggi et al. (1977 [triangle]); Wen et al. (2002 [triangle]); West et al. (1992 [triangle]). For a related amide-type acyclic polyether structure, see: Wen et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2844-scheme1.jpg

Experimental

Crystal data

  • C28H22N4O4
  • M r = 478.50
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2844-efi1.jpg
  • a = 32.648 (14) Å
  • b = 11.459 (4) Å
  • c = 12.516 (5) Å
  • V = 4682 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 K
  • 0.20 × 0.14 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.982, T max = 0.989
  • 4687 measured reflections
  • 1080 independent reflections
  • 670 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.083
  • S = 1.00
  • 1080 reflections
  • 167 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −6.17 e Å−3

Data collection: SMART (Bruker 2001 [triangle]); cell refinement: SAINT (Bruker 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809041312/bq2164sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041312/bq2164Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The amide-type acyclic polyethers have attracted wide attention in coordination chemistry and separation science because they have good complexing ability (West et al., 1992) and high selectivity to metal ions (Wen et al., 2002). In addition, this kind of compounds have been used successfully as active materials for ion-selective electrodes (Guggi et al., 1977). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of (I) contains one half-molecule, the other half being related by a crystallographic twofold axis (Fig. 1). All bond lengths and angles in (I) are within normal ranges, and comparable with those in the related compound (Wen et al., 2005). The quinoline ring is essentially planar, with a dihedral angle of 2.1 (2)° between the benzene (C4—C9) ring and pyridine (C1—C4/C9/N1) ring. The dihedral angle between the quinoline ring and the central benzene ring is 19.1 (4)°. The amide N and C atoms are also planar configuration because the sum of the angles around atoms N2 and C10 are 359.3° and 360.0°, respectively. The intramolecular hydrogen bonds, N2—H2A···N1, N2—H2A···O2 and C7-H7···O1, form stable five- and six-membered rings, this being helpful to the formation of the planar configuration. The crystal packing is stabilized by intermolecular C11—H11B···O1 hydrogen bonds, and π-π interactions [short centroid-centroid separation = 3.9009 (6) Å] between the pyridine rings and central benzene rings of the neighboring molecules (Table 1 and Fig. 2).

Experimental

Compound (I) was prepared according to the literature method of Wen et al. (2005). Yellow single crystals suitable for an X-ray diffraction study were obtained by slow evaporation of a petroleum ether-ethyl acetate solution (1:3 v/v) over a period of 10 d.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N). Absolute structure cannot be determined reliably.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 20% probability displacement ellipsoids. [Symmetry code: (i) -x, 2-y, z].
Fig. 2.
The packing diagram of (I) viewed down c-axis. Intermolecular H-bonds are indicated by dashed lines. H atoms were omitted for clearance.

Crystal data

C28H22N4O4F(000) = 2000
Mr = 478.50Dx = 1.358 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 925 reflections
a = 32.648 (14) Åθ = 2.5–20.7°
b = 11.459 (4) ŵ = 0.09 mm1
c = 12.516 (5) ÅT = 294 K
V = 4682 (3) Å3Prism, yellow
Z = 80.20 × 0.14 × 0.12 mm

Data collection

Bruker SMART CCD area-detector diffractometer1080 independent reflections
Radiation source: fine-focus sealed tube670 reflections with I > 2σ(I)
graphiteRint = 0.060
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick,1996)h = −38→34
Tmin = 0.982, Tmax = 0.989k = −12→13
4687 measured reflectionsl = −14→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0372P)2] where P = (Fo2 + 2Fc2)/3
1080 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.13016 (8)1.0567 (3)0.5394 (3)0.0891 (10)
O20.03851 (7)1.0165 (2)0.39873 (19)0.0631 (8)
N10.00878 (10)0.8564 (3)0.6781 (2)0.0567 (8)
N20.07030 (10)0.9673 (3)0.5830 (3)0.0588 (9)
C1−0.02253 (12)0.8058 (3)0.7257 (3)0.0617 (11)
H1−0.04570.79000.68510.074*
C2−0.02300 (13)0.7745 (4)0.8338 (4)0.0695 (12)
H2−0.04600.73920.86340.083*
C30.01028 (14)0.7961 (4)0.8944 (4)0.0712 (12)
H30.01040.77600.96640.085*
C40.04461 (13)0.8488 (3)0.8485 (3)0.0588 (10)
C50.08058 (15)0.8758 (4)0.9066 (4)0.0772 (12)
H50.08270.85520.97830.093*
C60.11176 (16)0.9313 (4)0.8577 (4)0.0818 (15)
H60.13520.94840.89680.098*
C70.11003 (13)0.9644 (4)0.7497 (4)0.0717 (12)
H70.13191.00340.71820.086*
C80.07540 (11)0.9384 (3)0.6908 (3)0.0562 (10)
C90.04230 (11)0.8797 (3)0.7402 (3)0.0513 (10)
C100.09592 (12)1.0223 (3)0.5173 (3)0.0599 (11)
C110.08113 (11)1.0392 (3)0.4046 (4)0.0635 (11)
H11A0.08661.11860.38180.076*
H11B0.09570.98670.35710.076*
C120.02089 (10)1.0103 (3)0.2991 (3)0.0583 (10)
C130.04141 (13)1.0219 (3)0.2046 (3)0.0728 (12)
H130.06941.03690.20430.087*
C140.02013 (13)1.0111 (4)0.1088 (4)0.0905 (17)
H140.03401.01940.04430.109*
H2A0.0455 (12)0.947 (3)0.560 (3)0.077 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0467 (16)0.098 (2)0.122 (2)−0.0231 (15)−0.007 (2)0.003 (2)
O20.0432 (15)0.086 (2)0.0598 (18)−0.0090 (13)0.0050 (14)−0.0031 (14)
N10.0398 (18)0.055 (2)0.075 (2)0.0006 (16)−0.0048 (18)−0.0033 (16)
N20.036 (2)0.065 (2)0.075 (3)−0.0069 (18)−0.0018 (19)−0.0029 (17)
C10.046 (3)0.055 (2)0.084 (3)0.002 (2)−0.004 (2)−0.001 (2)
C20.068 (3)0.061 (3)0.080 (3)0.002 (2)0.012 (2)−0.003 (2)
C30.087 (3)0.062 (3)0.064 (3)0.011 (3)0.002 (3)−0.005 (2)
C40.060 (3)0.049 (2)0.067 (3)0.009 (2)−0.010 (2)−0.0103 (19)
C50.090 (3)0.068 (3)0.073 (3)0.010 (3)−0.020 (3)−0.006 (2)
C60.076 (4)0.068 (3)0.102 (4)0.014 (3)−0.045 (3)−0.017 (3)
C70.053 (3)0.066 (3)0.097 (3)0.000 (2)−0.018 (2)−0.008 (2)
C80.044 (3)0.056 (2)0.069 (3)0.004 (2)−0.010 (2)−0.0128 (19)
C90.045 (2)0.040 (2)0.069 (3)0.0099 (18)−0.004 (2)−0.0094 (19)
C100.040 (2)0.053 (3)0.087 (3)0.001 (2)0.005 (2)−0.007 (2)
C110.043 (2)0.060 (2)0.088 (3)−0.0094 (18)0.011 (2)0.000 (2)
C120.067 (2)0.052 (2)0.055 (2)0.005 (2)0.005 (2)0.0020 (18)
C130.079 (3)0.067 (3)0.072 (3)0.003 (2)0.014 (3)0.009 (2)
C140.124 (4)0.087 (4)0.061 (3)0.024 (4)0.013 (3)0.005 (3)

Geometric parameters (Å, °)

O1—C101.217 (4)C5—C61.348 (6)
O2—C121.375 (4)C5—H50.9300
O2—C111.417 (4)C6—C71.406 (6)
N1—C11.317 (4)C6—H60.9300
N1—C91.369 (4)C7—C81.382 (5)
N2—C101.332 (5)C7—H70.9300
N2—C81.399 (5)C8—C91.415 (5)
N2—H2A0.89 (4)C10—C111.504 (5)
C1—C21.400 (5)C11—H11A0.9700
C1—H10.9300C11—H11B0.9700
C2—C31.348 (5)C12—C131.366 (5)
C2—H20.9300C12—C12i1.384 (7)
C3—C41.397 (5)C13—C141.391 (6)
C3—H30.9300C13—H130.9300
C4—C91.403 (4)C14—C14i1.339 (9)
C4—C51.416 (5)C14—H140.9300
C12—O2—C11117.8 (3)C6—C7—H7120.4
C1—N1—C9116.7 (3)C7—C8—N2124.1 (4)
C10—N2—C8129.3 (4)C7—C8—C9119.6 (4)
C10—N2—H2A120 (3)N2—C8—C9116.3 (3)
C8—N2—H2A111 (3)N1—C9—C4122.9 (3)
N1—C1—C2124.0 (4)N1—C9—C8117.1 (3)
N1—C1—H1118.0C4—C9—C8120.1 (4)
C2—C1—H1118.0O1—C10—N2126.1 (4)
C3—C2—C1119.2 (4)O1—C10—C11117.8 (4)
C3—C2—H2120.4N2—C10—C11116.0 (3)
C1—C2—H2120.4O2—C11—C10109.9 (3)
C2—C3—C4119.7 (4)O2—C11—H11A109.7
C2—C3—H3120.2C10—C11—H11A109.7
C4—C3—H3120.2O2—C11—H11B109.7
C3—C4—C9117.6 (4)C10—C11—H11B109.7
C3—C4—C5123.3 (4)H11A—C11—H11B108.2
C9—C4—C5119.1 (4)C13—C12—O2125.1 (3)
C6—C5—C4119.7 (4)C13—C12—C12i120.0 (2)
C6—C5—H5120.1O2—C12—C12i114.91 (16)
C4—C5—H5120.1C12—C13—C14119.5 (4)
C5—C6—C7122.3 (4)C12—C13—H13120.2
C5—C6—H6118.8C14—C13—H13120.2
C7—C6—H6118.8C14i—C14—C13120.5 (2)
C8—C7—C6119.2 (5)C14i—C14—H14119.8
C8—C7—H7120.4C13—C14—H14119.8
C9—N1—C1—C2−0.6 (6)C3—C4—C9—C8176.9 (4)
N1—C1—C2—C3−0.2 (7)C5—C4—C9—C8−0.8 (5)
C1—C2—C3—C4−0.3 (6)C7—C8—C9—N1179.8 (3)
C2—C3—C4—C91.5 (6)N2—C8—C9—N10.4 (4)
C2—C3—C4—C5179.2 (4)C7—C8—C9—C40.3 (5)
C3—C4—C5—C6−177.1 (4)N2—C8—C9—C4−179.1 (3)
C9—C4—C5—C60.6 (6)C8—N2—C10—O11.7 (6)
C4—C5—C6—C70.1 (7)C8—N2—C10—C11179.5 (3)
C5—C6—C7—C8−0.6 (7)C12—O2—C11—C10−170.3 (3)
C6—C7—C8—N2179.8 (4)O1—C10—C11—O2−168.2 (3)
C6—C7—C8—C90.4 (6)N2—C10—C11—O213.8 (4)
C10—N2—C8—C70.3 (6)C11—O2—C12—C131.5 (5)
C10—N2—C8—C9179.7 (3)C11—O2—C12—C12i−179.1 (4)
C1—N1—C9—C42.0 (5)O2—C12—C13—C14178.5 (3)
C1—N1—C9—C8−177.4 (3)C12i—C12—C13—C14−0.9 (7)
C3—C4—C9—N1−2.5 (5)C12—C13—C14—C14i−0.4 (8)
C5—C4—C9—N1179.7 (3)

Symmetry codes: (i) −x, −y+2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2164).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guggi, M., Pretsch, E. & Simon, W. (1977). Anal. Chim. Acta, 91, 107–112.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wen, Y. H., Lahiri, S., Qin, Z., Wu, X. L. & Liu, W. S. (2002). J. Radioanal. Nucl. Chem.253, 263–265.
  • Wen, Y.-H., Li, M.-J., Zhang, S.-S. & Li, X.-M. (2005). Acta Cryst. E61, o3373–o3374.
  • West, S. J., Ozawa, S., Seller, K., Tan, S. S. & Simon, W. (1992). Anal. Chem.64, 533–540.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography