PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1393.
Published online 2009 October 17. doi:  10.1107/S1600536809042238
PMCID: PMC2971235

Aqua[N-(2,5-dihydroxybenzyl)imino­diacetato]copper(II)

Abstract

The title complex, [Cu(C11H11NO6)(H2O)], contains a CuII atom in a distorted square-pyramidal geometry. The metal centre is coordinated in the basal sites by one water mol­ecule and two carboxyl­ate O atoms and one N atom of the tetra­dentate ligand [Cu—O range, 1.9376 (11)–1.9541 (12), Cu—N, 1.9929 (12) Å] while the apical site is occupied by a hydro­quinone O donor atom [Cu—O, 2.3746 (12) Å]. Inter­molecular hydrogen bonding inter­actions involving both hydro­quinone hydr­oxy groups and the coordinated water as donors give a three-dimensional framework structure.

Related literature

For general background to p-hydro­quinones and their oxidation products p-semiquinones and p-quinones, see: Dooley et al. (1998 [triangle]); Wang et al. (1996 [triangle]); Calvo et al. (2000 [triangle]); Iwata et al. (1998 [triangle]); Drouza et al. (2002 [triangle]); Huang et al. (2008 [triangle]); Addison et al. (1984 [triangle]). For the synthesis, see: Fan (1992 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1393-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H11NO6)(H2O)]
  • M r = 334.76
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1393-efi1.jpg
  • a = 13.0461 (16) Å
  • b = 9.7919 (12) Å
  • c = 19.374 (2) Å
  • V = 2474.9 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.80 mm−1
  • T = 294 K
  • 0.22 × 0.18 × 0.12 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.693, T max = 0.813
  • 17710 measured reflections
  • 2929 independent reflections
  • 2662 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.070
  • S = 1.04
  • 2929 reflections
  • 198 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXL97; software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042238/zs2013sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042238/zs2013Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the Science Foundation of Guangxi (No.0832098, 0731052) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of MOE, China.

supplementary crystallographic information

Comment

p-Hydroquinones, along with their oxidation products p-semiquinones and p-quinones, are very important in the oxidative maintenance of biological amine levels (Dooley et al., 1998), tissue formation (Wang et al., 1996), photosynthesis (Calvo et al., 2000) and aerobic respiration (Iwata et al., 1998). These compounds are involved in interesting organic electron- and hydrogen-transfer systems, e.g. electron-transfer reactions between transition metal centers and p-quinone cofactors are vital for all life (Drouza et al., 2002), occurring in key biological processes. As part of a series of the studies (Huang et al., 2008), we report here the synthesis and structure of the title compound, a new CuII complex with the related ligand 2-[N,N-bis(carboxylatomethyl)aminomethyl]hydroquinone. The molecular structure of the title compound [Cu(C11H11NO6)(H2O)] (I) is shown in Fig. 1. The CuII atom has a distorted square-pyramidal geometry with a τ parameter of 0.09 (Addison et al., 1984). The basal sites are occupied by one water molecule, as well as two carboxylate O atoms and one N atom of the ligand. In the apical position, the O atom of the hydroxybenzene coordinates to the CuII atom. All bond distances and bond angles have normal values. The crystal packing of (I) (Fig. 2) involves intermolecular O—H···O hydrogen bonds (Table 1). The non-coordinated carboxylate O2 atom accepts intermolecular hydrogen bonds from the coordinated hydroxy O (O5) of the hydroquinone ligand and from the coordinated water (O7). The non-coordinated carboxylate O4 atom is also an acceptor for a water H donor in an intermolecular hydrogen bond. The coordinated atom O3 accepts a hydrogen bond from the non-coordinated hydroquinone O (O6). These interactions result in a three-dimensional hydrogen-bonded framework structure.

Experimental

The ligand 2-[N,N-bis(carboxylatomethyl)aminomethyl]hydroquinone was prepared according to a literature procedure (Fan et al., 1992). The title complex was synthesized by the addition of CuCl2.2H2O (0.0850 g, 0.5 mmol) to 20 ml of a methanol solution containing the ligand (0.1275 g, 0.5 mmol). The resulting solution was stirred for 3 h at 60°C, and then cooled and filtered. Blue single crystal blocks were isolated from the solution at room temperature over six days.

Refinement

H atoms on C atoms were positoned geometrically with C—Haromatic = 0.93 Å and C—Haliphatic = 0.97 Å and treated as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids.
Fig. 2.
The packing for (I), showing hydrogen bonds as dashed lines.

Crystal data

[Cu(C11H11NO6)(H2O)]F(000) = 1368
Mr = 334.76Dx = 1.797 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ac 2abCell parameters from 6907 reflections
a = 13.0461 (16) Åθ = 1.6–27.9°
b = 9.7919 (12) ŵ = 1.80 mm1
c = 19.374 (2) ÅT = 294 K
V = 2474.9 (5) Å3Block, blue
Z = 80.22 × 0.18 × 0.12 mm

Data collection

Rigaku Saturn diffractometer2929 independent reflections
Radiation source: rotating anode2662 reflections with I > 2σ(I)
confocalRint = 0.026
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.1°
ω scansh = −17→17
Absorption correction: multi-scan (Jacobson, 1998)k = −12→11
Tmin = 0.693, Tmax = 0.813l = −25→22
17710 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0451P)2 + 0.7209P] where P = (Fo2 + 2Fc2)/3
2929 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.566322 (13)0.226573 (19)0.381922 (9)0.01771 (8)
O10.68631 (9)0.23223 (12)0.44079 (6)0.0273 (3)
O20.83131 (8)0.34779 (12)0.45719 (6)0.0275 (3)
O30.47226 (9)0.23658 (11)0.30369 (5)0.0214 (2)
O40.43813 (9)0.36157 (13)0.21087 (6)0.0300 (3)
O50.43629 (9)0.31326 (14)0.45565 (6)0.0259 (3)
H50.402 (2)0.269 (3)0.4779 (13)0.049 (7)*
O60.24306 (11)0.69678 (15)0.29249 (7)0.0402 (3)
H40.179 (2)0.700 (3)0.3008 (12)0.046 (6)*
O70.54070 (9)0.03204 (12)0.39637 (7)0.0242 (2)
H7A0.5782 (16)−0.006 (2)0.4227 (12)0.039 (6)*
H7B0.5424 (18)−0.010 (3)0.3566 (13)0.046 (7)*
N10.60886 (9)0.41382 (12)0.35356 (6)0.0164 (2)
C10.74866 (11)0.32885 (16)0.42719 (7)0.0205 (3)
C20.72035 (11)0.42214 (16)0.36733 (8)0.0225 (3)
H2A0.73890.51550.37840.027*
H2B0.75810.39520.32640.027*
C30.48912 (11)0.33842 (16)0.26298 (7)0.0200 (3)
C40.58171 (11)0.42657 (17)0.27948 (7)0.0209 (3)
H4A0.63940.39830.25130.025*
H4B0.56650.52120.26880.025*
C50.55454 (11)0.51871 (16)0.39631 (8)0.0212 (3)
H5A0.57880.60870.38320.025*
H5B0.57180.50460.44450.025*
C60.44000 (11)0.51419 (17)0.38847 (7)0.0203 (3)
C70.38238 (12)0.41397 (16)0.42132 (7)0.0214 (3)
C80.27640 (12)0.41627 (18)0.41733 (8)0.0268 (3)
H80.23790.35300.44200.032*
C90.22764 (13)0.51300 (19)0.37651 (8)0.0288 (4)
H90.15650.51490.37420.035*
C100.28474 (13)0.60661 (17)0.33916 (9)0.0275 (3)
C110.39017 (12)0.60955 (16)0.34741 (9)0.0268 (3)
H110.42820.67660.32510.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01778 (12)0.01416 (12)0.02119 (11)−0.00129 (6)−0.00341 (6)0.00288 (6)
O10.0249 (6)0.0251 (6)0.0320 (6)−0.0065 (5)−0.0100 (5)0.0112 (4)
O20.0206 (5)0.0312 (6)0.0306 (6)−0.0049 (5)−0.0093 (4)0.0097 (5)
O30.0218 (5)0.0199 (5)0.0226 (5)−0.0030 (4)−0.0037 (4)0.0019 (4)
O40.0303 (6)0.0343 (7)0.0254 (6)−0.0017 (5)−0.0107 (4)0.0048 (5)
O50.0266 (6)0.0260 (6)0.0251 (6)0.0021 (5)0.0062 (4)0.0086 (5)
O60.0264 (7)0.0411 (8)0.0532 (8)0.0104 (6)−0.0013 (6)0.0175 (6)
O70.0251 (5)0.0158 (5)0.0317 (6)−0.0001 (5)−0.0054 (5)0.0033 (5)
N10.0135 (5)0.0169 (6)0.0187 (5)0.0001 (4)−0.0009 (4)0.0026 (4)
C10.0194 (6)0.0198 (7)0.0223 (6)0.0012 (6)−0.0013 (5)0.0025 (5)
C20.0150 (6)0.0240 (7)0.0285 (7)−0.0019 (6)−0.0034 (5)0.0084 (6)
C30.0190 (7)0.0212 (7)0.0200 (7)0.0024 (5)0.0003 (5)−0.0017 (5)
C40.0200 (7)0.0239 (8)0.0188 (7)−0.0013 (6)−0.0007 (5)0.0054 (5)
C50.0212 (7)0.0156 (7)0.0266 (7)−0.0005 (5)−0.0002 (6)−0.0034 (6)
C60.0199 (7)0.0172 (7)0.0236 (7)0.0014 (5)0.0027 (5)−0.0022 (5)
C70.0248 (7)0.0207 (7)0.0186 (6)0.0031 (6)0.0041 (5)−0.0009 (5)
C80.0231 (7)0.0309 (9)0.0263 (8)−0.0033 (7)0.0063 (6)0.0022 (6)
C90.0190 (7)0.0348 (9)0.0327 (8)0.0027 (7)0.0036 (6)−0.0010 (6)
C100.0250 (8)0.0245 (8)0.0329 (8)0.0074 (6)0.0014 (6)0.0016 (6)
C110.0239 (8)0.0201 (8)0.0363 (8)0.0020 (6)0.0049 (6)0.0059 (6)

Geometric parameters (Å, °)

Cu1—O11.9376 (11)C1—C21.522 (2)
Cu1—O31.9526 (11)C2—H2A0.9700
Cu1—O71.9541 (12)C2—H2B0.9700
Cu1—N11.9929 (12)C3—C41.519 (2)
Cu1—O52.3746 (12)C4—H4A0.9700
O1—C11.2752 (19)C4—H4B0.9700
O2—C11.2390 (18)C5—C61.503 (2)
O3—C31.2903 (18)C5—H5A0.9700
O4—C31.2302 (18)C5—H5B0.9700
O5—C71.3818 (19)C6—C111.388 (2)
O5—H50.76 (3)C6—C71.390 (2)
O6—C101.376 (2)C7—C81.385 (2)
O6—H40.86 (3)C8—C91.388 (2)
O7—H7A0.80 (2)C8—H80.9300
O7—H7B0.87 (3)C9—C101.385 (2)
N1—C21.4810 (18)C9—H90.9300
N1—C41.4834 (17)C10—C111.385 (2)
N1—C51.4976 (19)C11—H110.9300
O1—Cu1—O3164.41 (5)O4—C3—O3123.49 (14)
O1—Cu1—O794.69 (5)O4—C3—C4119.88 (14)
O3—Cu1—O793.01 (5)O3—C3—C4116.50 (12)
O1—Cu1—N184.90 (5)N1—C4—C3110.22 (11)
O3—Cu1—N185.11 (5)N1—C4—H4A109.6
O7—Cu1—N1169.72 (5)C3—C4—H4A109.6
O1—Cu1—O5102.29 (5)N1—C4—H4B109.6
O3—Cu1—O590.00 (5)C3—C4—H4B109.6
O7—Cu1—O598.05 (5)H4A—C4—H4B108.1
N1—Cu1—O592.06 (5)N1—C5—C6113.23 (12)
C1—O1—Cu1114.51 (9)N1—C5—H5A108.9
C3—O3—Cu1113.96 (9)C6—C5—H5A108.9
C7—O5—Cu1109.22 (9)N1—C5—H5B108.9
C7—O5—H5112 (2)C6—C5—H5B108.9
Cu1—O5—H5124 (2)H5A—C5—H5B107.7
C10—O6—H4106.8 (16)C11—C6—C7118.94 (14)
Cu1—O7—H7A116.0 (17)C11—C6—C5120.25 (14)
Cu1—O7—H7B109.1 (17)C7—C6—C5120.81 (14)
H7A—O7—H7B109 (2)O5—C7—C8123.13 (14)
C2—N1—C4113.83 (11)O5—C7—C6116.67 (13)
C2—N1—C5109.11 (11)C8—C7—C6120.18 (14)
C4—N1—C5111.37 (11)C7—C8—C9120.03 (15)
C2—N1—Cu1105.92 (9)C7—C8—H8120.0
C4—N1—Cu1106.12 (9)C9—C8—H8120.0
C5—N1—Cu1110.28 (9)C10—C9—C8120.18 (16)
O2—C1—O1124.70 (14)C10—C9—H9119.9
O2—C1—C2118.61 (13)C8—C9—H9119.9
O1—C1—C2116.62 (13)O6—C10—C11117.07 (15)
N1—C2—C1110.04 (12)O6—C10—C9123.74 (15)
N1—C2—H2A109.7C11—C10—C9119.17 (15)
C1—C2—H2A109.7C10—C11—C6121.15 (15)
N1—C2—H2B109.7C10—C11—H11119.4
C1—C2—H2B109.7C6—C11—H11119.4
H2A—C2—H2B108.2
O3—Cu1—O1—C136.6 (3)O2—C1—C2—N1−161.79 (13)
O7—Cu1—O1—C1155.93 (11)O1—C1—C2—N121.11 (19)
N1—Cu1—O1—C1−13.76 (11)Cu1—O3—C3—O4179.80 (12)
O5—Cu1—O1—C1−104.76 (11)Cu1—O3—C3—C43.87 (16)
O1—Cu1—O3—C3−38.9 (2)C2—N1—C4—C3145.89 (13)
O7—Cu1—O3—C3−158.44 (11)C5—N1—C4—C3−90.25 (14)
N1—Cu1—O3—C311.43 (10)Cu1—N1—C4—C329.79 (13)
O5—Cu1—O3—C3103.49 (11)O4—C3—C4—N1160.38 (13)
O1—Cu1—O5—C7130.89 (10)O3—C3—C4—N1−23.53 (18)
O3—Cu1—O5—C7−39.44 (10)C2—N1—C5—C6−177.33 (12)
O7—Cu1—O5—C7−132.48 (10)C4—N1—C5—C656.17 (16)
N1—Cu1—O5—C745.67 (10)Cu1—N1—C5—C6−61.38 (14)
O1—Cu1—N1—C223.76 (9)N1—C5—C6—C11−102.16 (17)
O3—Cu1—N1—C2−144.26 (9)N1—C5—C6—C777.03 (17)
O7—Cu1—N1—C2−64.4 (3)Cu1—O5—C7—C8129.74 (13)
O5—Cu1—N1—C2125.92 (9)Cu1—O5—C7—C6−48.69 (15)
O1—Cu1—N1—C4145.08 (9)C11—C6—C7—O5173.46 (14)
O3—Cu1—N1—C4−22.93 (9)C5—C6—C7—O5−5.7 (2)
O7—Cu1—N1—C456.9 (3)C11—C6—C7—C8−5.0 (2)
O5—Cu1—N1—C4−112.75 (9)C5—C6—C7—C8175.78 (14)
O1—Cu1—N1—C5−94.17 (9)O5—C7—C8—C9−173.82 (15)
O3—Cu1—N1—C597.81 (9)C6—C7—C8—C94.6 (2)
O7—Cu1—N1—C5177.7 (2)C7—C8—C9—C100.6 (3)
O5—Cu1—N1—C57.99 (9)C8—C9—C10—O6173.45 (16)
Cu1—O1—C1—O2−177.60 (12)C8—C9—C10—C11−5.2 (3)
Cu1—O1—C1—C2−0.69 (18)O6—C10—C11—C6−174.02 (15)
C4—N1—C2—C1−145.39 (13)C9—C10—C11—C64.7 (3)
C5—N1—C2—C189.54 (15)C7—C6—C11—C100.4 (2)
Cu1—N1—C2—C1−29.17 (14)C5—C6—C11—C10179.58 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.76 (3)1.93 (3)2.6859 (16)172 (3)
O6—H4···O3ii0.86 (3)2.00 (3)2.8442 (18)168 (2)
O7—H7A···O2iii0.80 (2)1.97 (2)2.7261 (16)157 (2)
O7—H7B···O4iv0.87 (3)1.83 (3)2.6794 (18)163 (2)

Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1/2, y+1/2, z; (iii) −x+3/2, y−1/2, z; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2013).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Calvo, R., Abresch, E. C., Bittl, R., Feher, G., Hofbauer, W., Isaacson, R. A., Lubitz, W., Okamura, M. Y. & Paddock, M. L. (2000). J. Am. Chem. Soc.122, 7327–7341.
  • Dooley, D. M., Scott, R. A., Knowles, P. F., Colanglo, C. M., McGuirl, M. A. & Brown, D. E. (1998). J. Am. Chem. Soc.120, 2599-2605.
  • Drouza, C., Tolis, V., Gramlich, V., Raptopoulou, C., Terzis, A., Sigalas, M. P., Kabanos, T. A. & Keramidas, A. D. (2002). Chem. Commun., pp. 2786–2787. [PubMed]
  • Fan, N.-T. (1992). Handbook of Organic Synthesis Beijing Institute of Technology Press.
  • Huang, F.-P., Wang, Y.-X., Zhao, J., Bian, H.-D., Yu, Q. & Liang, H. (2008). Chin. J. Inorg. Chem.24, 1523–1526.
  • Iwata, S., Lee, L. W., Okada, K., Lee, J. K., Iwata, M., Rasmussen, B., Link, T. A., Ramaswamy, S. & Jap, B. K. (1998). Science, 281, 64-71. [PubMed]
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, S. X., Mure, M., Medzihradsky, K. F., Burlingame, A. L., Brown, D. E., Dooley, D. M., Smith, A. J., Kagan, H. M. & Klinman, J. P. (1996). Science, 273, 1078–1084. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography