PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2606–o2607.
Published online 2009 October 3. doi:  10.1107/S1600536809037611
PMCID: PMC2971228

N-(Fluoren-9-ylmethoxy­carbon­yl)-l-aspartic acid 4-tert-butyl ester

Abstract

The bond distances and bond angles of the title compound, C23H25NO6, are consistent with values typically found for fluoren-9-ylmethoxy­carbonyl-protected amino acids. The conformations of the backbone and the side chain are slightly different from those of l-aspartic acid. The crystal structure exhibits two inter­molecular hydrogen bonds, forming a two-dimensional sheet structure parallel to the ab plane.

Related literature

For the crystal structures of aspartic acids, see: Dawson (1977 [triangle]); Sequeira et al. (1989 [triangle]); Flaig et al. (1998 [triangle]); Rao (1973 [triangle]); Wang et al. (2007 [triangle]); Umadevi et al. (2003 [triangle]); Derissen et al. (1968 [triangle]); Bendeif & Jelsch (2007 [triangle]). For the crystal structures of N-α-fluoren-9-ylmethoxy­carbonyl-protected amino acids, see: Valle et al. (1984 [triangle]); Yamada, Hashizume & Shimizu (2008 [triangle]); Yamada, Hashizume, Shimizu & Deguchi (2008 [triangle]); Yamada, Hashizume, Shimizu, Ohiki & Yokoyama (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2606-scheme1.jpg

Experimental

Crystal data

  • C23H25NO6
  • M r = 411.44
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2606-efi1.jpg
  • a = 5.7166 (4) Å
  • b = 11.1175 (10) Å
  • c = 32.083 (3) Å
  • V = 2039.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 90 K
  • 0.11 × 0.05 × 0.04 mm

Data collection

  • Rigaku AFC-8 diffractometer with Saturn70 CCD detector
  • Absorption correction: none
  • 15110 measured reflections
  • 2722 independent reflections
  • 2167 reflections with I > 2σ(I)
  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.148
  • S = 1.13
  • 2722 reflections
  • 286 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: HKL-2000 (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809037611/fj2243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037611/fj2243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KY thanks the Ministry of Education, Science, Sports, Culture and Technology (MEXT) of Japan for funding this work [Young Scientists (B), grant No. 20750022]. TS appreciates support from the World Premier International Research Center Initiative (WPI Initiative) on Materials Nanoarchitronics (MANA) at NIMS, from MEXT.

supplementary crystallographic information

Comment

L-Aspartic acid is one of the 20 building blocks of proteins, and, in mammals, can be produced from oxaloacetate by transamination. As for the related compounds of an aspartic acid, the crystal structures of L-aspartic acid (Derissen et al.,1968; Bendeif & Jelsch, 2007), L-aspartic acid monohydrate (Umadevi et al., 2003), DL-aspartic acid (Sequeira et al., 1989; Flaig et al., 1998; Rao, 1973; Wang et al., 2007), and DL-aspartic acid hydrochloride (Dawson, 1977) have been reported so far.

Fluoren-9-ylmethoxycarbonyl (Fmoc) group is widely used for solid-phase peptide synthesis protocols as an N-α-protecting group. To our best knowledge, however,there have been only four literatures reporting crystal structures of Fmoc-protected amino acids (Valle et al., 1984; Yamada, Hashizume & Shimizu, 2008; Yamada, Hashizume, Shimizu & Deguchi, 2008; Yamada, Hashizume, Shimizu, Ohiki & Yokoyama, 2008). In this communication, the crystal structure of N-Fmoc-protected aspartic acid 4-tert-butyl ester (I) is reported.

The molecular structure of (I) is shown in Fig. 1 together with the atom labeling. The bond lengths and angles of the present molecule are in reasonable agreement with typical values found in L-aspartic acids and the related compounds. The conformations of the backbone and the side-chain, however, are slightly different from those of L-aspartic acid. The torsion angles, N1–C1–C2–C3 and N1–C1–C4–O4, are found to be 62.5 (4) and 17.0 (5)°, respectively. For L-aspartic acid, the corresponding angles are -60.3 and -39.2°, respectively. In the Fmoc-protected amino acids, the fluoren moiety takes various conformations as shown in the available literatures. In this case, the conformation of the Fmoc moiety is similar to those of Fmoc-protected isoleucine and serine.

Fig. 2 shows the crystal structure of (I). The molecules are linked via intermolecular hydrogen bonds between carboxyl and Fmoc moieties, O3–H3···O5 to form the column around the 21 screw axis parallel to the b axis. The columns, related by translation symmeties along the a axis each other, are joined together through weak hydrogen bonds between the amino and carboxyl groups, N1—H1···O3, two-dimensional sheet structures are formed paralell to the ab plane consequentry. The geometries of the hydrogen bonds are listed in Table 2.

Experimental

A powdered sample of the title compound was purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Single crystals suitable for X-ray structure analysis could be obtained by recrystallization from ethyl acetate-dichloromethane (80:20) solution, which afforded white needle-like crystals.

Refinement

All H atoms were located on the difference maps, and were treated as riding atoms with C/N/O–H distances of 1.00, 0.99, 0.98, 0.95, 0.88 and 0.84 Å, for methyne, methylene, methyl, phenyl, amino and hydroxyl groups, respectively, on the refinements. The Uiso's of the H atoms were fixed to be 1.2Ueq(C/N) for methyne, methylene, phenyl and amino, or 1.5Ueq(C/O) for methyl and hydroxyl of the parent atoms.

All Friedel pairs were merged, and all f"s of containing atoms were set to zero.

Figures

Fig. 1.
A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I) viewed from the c axis. Broken lines indicate the hydrogen bonds. The molecules in the region of 0 < z < 1/2 were plotted. The atoms of the fluoren-9-yl moiety and H atoms, except for H1 and H3, were omitted for ...

Crystal data

C23H25NO6F(000) = 872
Mr = 411.44Dx = 1.340 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 15181 reflections
a = 5.7166 (4) Åθ = 1.8–27.6°
b = 11.1175 (10) ŵ = 0.10 mm1
c = 32.083 (3) ÅT = 90 K
V = 2039.0 (3) Å3Needle, colourless
Z = 40.11 × 0.05 × 0.04 mm

Data collection

Rigaku AFC-8 diffractometer with Saturn70 CCD detector2167 reflections with I > 2σ(I)
Radiation source: fine-focus rotating anodeRint = 0.077
confocalθmax = 27.6°, θmin = 1.9°
Detector resolution: 28.5714 pixels mm-1h = −7→6
ω scansk = −14→10
15110 measured reflectionsl = −41→41
2722 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0694P)2 + 0.981P] where P = (Fo2 + 2Fc2)/3
2722 reflections(Δ/σ)max < 0.001
286 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = −0.27 e Å3

Special details

Experimental. All Friedel pairs were merged, and all f"s of containing atoms were set to zero.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against al reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6301 (5)0.4494 (2)0.15286 (8)0.0271 (6)
O20.7666 (5)0.3298 (2)0.10086 (7)0.0237 (6)
O31.1545 (5)0.4557 (2)0.20322 (8)0.0254 (6)
H31.20640.52450.20890.038*
O40.8720 (5)0.5069 (2)0.24884 (8)0.0267 (6)
O50.6813 (5)0.1857 (2)0.28643 (7)0.0230 (6)
O60.3240 (5)0.2717 (2)0.27449 (7)0.0207 (6)
N10.6108 (6)0.3053 (3)0.22971 (9)0.0221 (7)
H10.50040.33950.21470.027*
C10.8504 (7)0.3115 (3)0.21511 (11)0.0203 (8)
H1A0.94310.25110.23130.024*
C20.8711 (7)0.2786 (3)0.16889 (11)0.0221 (8)
H2A1.03850.27870.16100.027*
H2B0.81060.19610.16480.027*
C30.7406 (7)0.3629 (3)0.14049 (11)0.0205 (8)
C40.9549 (7)0.4366 (3)0.22432 (11)0.0215 (8)
C50.6574 (8)0.4001 (3)0.06656 (11)0.0254 (9)
C60.7397 (9)0.3306 (4)0.02814 (12)0.0363 (11)
H6A0.68390.24740.02980.054*
H6B0.91100.33120.02700.054*
H6C0.67680.36870.00300.054*
C70.7598 (8)0.5265 (3)0.06653 (13)0.0309 (9)
H7A0.93080.52160.06760.046*
H7B0.70240.57060.09090.046*
H7C0.71200.56850.04110.046*
C80.3951 (8)0.3978 (4)0.07039 (14)0.0333 (10)
H8A0.34810.43960.09590.050*
H8B0.34100.31420.07150.050*
H8C0.32530.43810.04620.050*
C90.5502 (7)0.2491 (3)0.26529 (11)0.0180 (7)
C100.2379 (7)0.2366 (3)0.31542 (10)0.0206 (8)
H10A0.36630.20150.33220.025*
H10B0.11250.17580.31260.025*
C110.1424 (7)0.3503 (3)0.33673 (11)0.0199 (8)
H110.02320.39010.31850.024*
C120.0379 (7)0.3219 (3)0.37912 (11)0.0231 (8)
C13−0.1547 (8)0.2505 (3)0.38905 (11)0.0243 (8)
H13−0.23970.20990.36790.029*
C14−0.2195 (7)0.2401 (3)0.43060 (12)0.0263 (9)
H14−0.35070.19180.43780.032*
C15−0.0960 (8)0.2990 (3)0.46202 (12)0.0284 (9)
H15−0.14330.29030.49020.034*
C160.0969 (7)0.3707 (3)0.45224 (12)0.0261 (9)
H160.18300.41030.47350.031*
C170.1598 (8)0.3825 (3)0.41070 (11)0.0227 (8)
C180.3500 (7)0.4533 (3)0.39111 (11)0.0220 (8)
C190.5228 (8)0.5253 (3)0.40880 (12)0.0286 (9)
H190.53060.53650.43810.034*
C200.6843 (8)0.5807 (3)0.38242 (13)0.0302 (10)
H200.80670.62790.39400.036*
C210.6685 (8)0.5678 (3)0.33946 (13)0.0289 (9)
H210.77880.60720.32200.035*
C220.4919 (8)0.4973 (3)0.32146 (12)0.0250 (8)
H220.47920.49010.29200.030*
C230.3357 (7)0.4382 (3)0.34766 (11)0.0230 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0316 (17)0.0205 (13)0.0293 (14)0.0069 (13)0.0030 (13)0.0004 (10)
O20.0291 (16)0.0162 (12)0.0258 (13)0.0015 (12)−0.0022 (12)0.0003 (10)
O30.0280 (16)0.0139 (12)0.0342 (14)−0.0014 (12)0.0038 (13)0.0000 (10)
O40.0299 (17)0.0195 (12)0.0306 (13)0.0004 (13)0.0039 (13)−0.0027 (11)
O50.0225 (14)0.0157 (12)0.0307 (13)0.0032 (11)0.0002 (12)0.0030 (10)
O60.0205 (14)0.0179 (12)0.0237 (12)−0.0001 (11)−0.0007 (11)0.0004 (9)
N10.0208 (18)0.0186 (15)0.0269 (15)0.0018 (14)−0.0007 (13)0.0030 (12)
C10.0191 (19)0.0139 (16)0.0279 (18)0.0013 (16)−0.0016 (16)0.0020 (13)
C20.024 (2)0.0115 (16)0.0305 (18)0.0027 (15)0.0019 (17)0.0004 (13)
C30.0168 (19)0.0160 (17)0.0286 (19)−0.0019 (15)0.0021 (16)0.0032 (14)
C40.023 (2)0.0199 (17)0.0212 (17)0.0022 (16)−0.0020 (16)0.0023 (14)
C50.029 (2)0.0225 (18)0.0248 (18)−0.0006 (17)−0.0020 (19)0.0034 (14)
C60.041 (3)0.037 (2)0.031 (2)0.003 (2)−0.001 (2)−0.0055 (18)
C70.031 (2)0.0233 (19)0.039 (2)0.0000 (18)−0.003 (2)0.0060 (16)
C80.024 (2)0.031 (2)0.045 (2)−0.0005 (18)−0.007 (2)0.0090 (19)
C90.0171 (18)0.0119 (16)0.0249 (17)−0.0016 (14)−0.0015 (15)−0.0022 (13)
C100.0212 (19)0.0169 (16)0.0236 (17)0.0028 (15)0.0000 (16)0.0004 (13)
C110.021 (2)0.0133 (16)0.0260 (17)0.0008 (16)0.0001 (17)0.0016 (13)
C120.028 (2)0.0135 (16)0.0278 (18)0.0033 (16)0.0004 (17)0.0006 (14)
C130.025 (2)0.0162 (17)0.0316 (19)0.0022 (17)−0.0024 (18)−0.0024 (14)
C140.024 (2)0.0176 (17)0.037 (2)0.0013 (16)0.0061 (18)−0.0002 (15)
C150.038 (3)0.0202 (19)0.0270 (19)0.0022 (18)0.0056 (18)0.0016 (14)
C160.030 (2)0.0175 (18)0.031 (2)0.0028 (17)−0.0008 (18)−0.0040 (14)
C170.024 (2)0.0139 (16)0.0305 (19)0.0019 (16)−0.0001 (17)−0.0002 (13)
C180.020 (2)0.0140 (16)0.0317 (19)0.0006 (16)0.0002 (17)−0.0017 (13)
C190.034 (3)0.0188 (18)0.033 (2)−0.0009 (17)−0.0024 (19)−0.0046 (15)
C200.030 (2)0.0152 (18)0.045 (2)−0.0057 (17)−0.001 (2)−0.0088 (15)
C210.030 (2)0.0138 (17)0.043 (2)−0.0010 (17)0.008 (2)−0.0010 (15)
C220.029 (2)0.0131 (16)0.0326 (19)−0.0014 (17)0.0021 (18)−0.0015 (14)
C230.022 (2)0.0122 (16)0.035 (2)0.0020 (16)0.0013 (18)0.0005 (13)

Geometric parameters (Å, °)

O1—C31.218 (4)C8—H8C0.9800
O2—C31.332 (4)C10—C111.537 (5)
O2—C51.487 (4)C10—H10A0.9900
O3—C41.344 (5)C10—H10B0.9900
O3—H30.8400C11—C231.516 (5)
O4—C41.206 (4)C11—C121.518 (5)
O5—C91.232 (4)C11—H111.0000
O6—C91.350 (5)C12—C131.395 (6)
O6—C101.456 (4)C12—C171.402 (5)
N1—C91.346 (4)C13—C141.388 (5)
N1—C11.450 (5)C13—H130.9500
N1—H10.8800C14—C151.394 (6)
C1—C21.532 (5)C14—H140.9500
C1—C41.542 (5)C15—C161.397 (6)
C1—H1A1.0000C15—H150.9500
C2—C31.504 (5)C16—C171.387 (5)
C2—H2A0.9900C16—H160.9500
C2—H2B0.9900C17—C181.482 (5)
C5—C81.504 (6)C18—C191.392 (5)
C5—C71.522 (5)C18—C231.407 (5)
C5—C61.529 (5)C19—C201.395 (6)
C6—H6A0.9800C19—H190.9500
C6—H6B0.9800C20—C211.389 (6)
C6—H6C0.9800C20—H200.9500
C7—H7A0.9800C21—C221.402 (6)
C7—H7B0.9800C21—H210.9500
C7—H7C0.9800C22—C231.392 (5)
C8—H8A0.9800C22—H220.9500
C8—H8B0.9800
C3—O2—C5120.9 (3)N1—C9—O6110.2 (3)
C4—O3—H3109.5O6—C10—C11107.5 (3)
C9—O6—C10118.1 (3)O6—C10—H10A110.2
C9—N1—C1122.6 (3)C11—C10—H10A110.2
C9—N1—H1118.7O6—C10—H10B110.2
C1—N1—H1118.7C11—C10—H10B110.2
N1—C1—C2112.0 (3)H10A—C10—H10B108.5
N1—C1—C4110.3 (3)C23—C11—C12102.3 (3)
C2—C1—C4111.7 (3)C23—C11—C10112.0 (3)
N1—C1—H1A107.5C12—C11—C10111.5 (3)
C2—C1—H1A107.5C23—C11—H11110.3
C4—C1—H1A107.5C12—C11—H11110.3
C3—C2—C1113.6 (3)C10—C11—H11110.3
C3—C2—H2A108.9C13—C12—C17120.1 (3)
C1—C2—H2A108.9C13—C12—C11129.3 (3)
C3—C2—H2B108.9C17—C12—C11110.6 (3)
C1—C2—H2B108.9C14—C13—C12118.5 (4)
H2A—C2—H2B107.7C14—C13—H13120.7
O1—C3—O2126.0 (3)C12—C13—H13120.7
O1—C3—C2123.5 (3)C13—C14—C15121.3 (4)
O2—C3—C2110.5 (3)C13—C14—H14119.3
O4—C4—O3124.1 (3)C15—C14—H14119.3
O4—C4—C1123.8 (4)C14—C15—C16120.4 (4)
O3—C4—C1112.0 (3)C14—C15—H15119.8
O2—C5—C8110.4 (3)C16—C15—H15119.8
O2—C5—C7108.9 (3)C17—C16—C15118.4 (4)
C8—C5—C7113.5 (4)C17—C16—H16120.8
O2—C5—C6101.6 (3)C15—C16—H16120.8
C8—C5—C6111.3 (4)C16—C17—C12121.3 (4)
C7—C5—C6110.3 (3)C16—C17—C18130.4 (4)
C5—C6—H6A109.5C12—C17—C18108.3 (3)
C5—C6—H6B109.5C19—C18—C23120.9 (4)
H6A—C6—H6B109.5C19—C18—C17130.8 (3)
C5—C6—H6C109.5C23—C18—C17108.3 (3)
H6A—C6—H6C109.5C18—C19—C20118.4 (4)
H6B—C6—H6C109.5C18—C19—H19120.8
C5—C7—H7A109.5C20—C19—H19120.8
C5—C7—H7B109.5C21—C20—C19120.9 (4)
H7A—C7—H7B109.5C21—C20—H20119.6
C5—C7—H7C109.5C19—C20—H20119.6
H7A—C7—H7C109.5C20—C21—C22120.9 (4)
H7B—C7—H7C109.5C20—C21—H21119.6
C5—C8—H8A109.5C22—C21—H21119.6
C5—C8—H8B109.5C23—C22—C21118.5 (4)
H8A—C8—H8B109.5C23—C22—H22120.7
C5—C8—H8C109.5C21—C22—H22120.7
H8A—C8—H8C109.5C22—C23—C18120.3 (4)
H8B—C8—H8C109.5C22—C23—C11129.2 (3)
O5—C9—N1125.1 (4)C18—C23—C11110.4 (3)
O5—C9—O6124.7 (3)
C9—N1—C1—C2132.6 (3)C12—C13—C14—C15−0.2 (6)
C9—N1—C1—C4−102.3 (4)C13—C14—C15—C160.2 (6)
N1—C1—C2—C362.5 (4)C14—C15—C16—C170.7 (6)
C4—C1—C2—C3−61.9 (4)C15—C16—C17—C12−1.6 (6)
C5—O2—C3—O10.3 (6)C15—C16—C17—C18178.6 (4)
C5—O2—C3—C2−179.0 (3)C13—C12—C17—C161.7 (6)
C1—C2—C3—O10.5 (5)C11—C12—C17—C16−179.9 (4)
C1—C2—C3—O2179.7 (3)C13—C12—C17—C18−178.5 (3)
N1—C1—C4—O417.0 (5)C11—C12—C17—C18−0.1 (4)
C2—C1—C4—O4142.3 (4)C16—C17—C18—C191.9 (7)
N1—C1—C4—O3−165.8 (3)C12—C17—C18—C19−177.9 (4)
C2—C1—C4—O3−40.5 (4)C16—C17—C18—C23−178.1 (4)
C3—O2—C5—C8−63.1 (4)C12—C17—C18—C232.1 (4)
C3—O2—C5—C762.2 (5)C23—C18—C19—C20−1.0 (6)
C3—O2—C5—C6178.7 (3)C17—C18—C19—C20178.9 (4)
C1—N1—C9—O5−9.2 (5)C18—C19—C20—C212.2 (6)
C1—N1—C9—O6171.1 (3)C19—C20—C21—C22−1.0 (6)
C10—O6—C9—O510.9 (5)C20—C21—C22—C23−1.5 (6)
C10—O6—C9—N1−169.3 (3)C21—C22—C23—C182.6 (6)
C9—O6—C10—C11122.3 (3)C21—C22—C23—C11−175.1 (4)
O6—C10—C11—C23−68.6 (4)C19—C18—C23—C22−1.4 (6)
O6—C10—C11—C12177.4 (3)C17—C18—C23—C22178.7 (3)
C23—C11—C12—C13176.5 (4)C19—C18—C23—C11176.7 (3)
C10—C11—C12—C13−63.7 (5)C17—C18—C23—C11−3.2 (4)
C23—C11—C12—C17−1.7 (4)C12—C11—C23—C22−179.1 (4)
C10—C11—C12—C17118.1 (4)C10—C11—C23—C2261.3 (5)
C17—C12—C13—C14−0.8 (5)C12—C11—C23—C183.0 (4)
C11—C12—C13—C14−178.8 (4)C10—C11—C23—C18−116.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···O5i0.841.912.744 (3)172
N1—H1···O3ii0.882.393.213 (4)156

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2243).

References

  • Bendeif, E. & Jelsch, C. (2007). Acta Cryst. C63, o361–o364. [PubMed]
  • Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  • Dawson, B. (1977). Acta Cryst. B33, 882–884.
  • Derissen, J. L., Endeman, H. J. & Peerdeman, A. F. (1968). Acta Cryst. B24, 1349–1354.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flaig, R., Koritsanszky, T., Zobel, D. & Luger, P. (1998). J. Am. Chem. Soc 120, 2227–2238.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rao, S. T. (1973). Acta Cryst. B29, 1718–1720.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sequeira, A., Rajagopal, H. & Ramanadham, M. (1989). Acta Cryst. C45, 906–908.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Umadevi, K., Anitha, K., Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2003). Acta Cryst. E59, o1073–o1075.
  • Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem 62, 2661–2666.
  • Wang, G.-M., Li, Z.-X., Duan, C.-S. & Li, H. (2007). Acta Cryst. E63, o4003.
  • Yamada, K., Hashizume, D. & Shimizu, T. (2008). Acta Cryst. E64, o1112. [PMC free article] [PubMed]
  • Yamada, K., Hashizume, D., Shimizu, T. & Deguchi, K. (2008). Acta Cryst. E64, o1533. [PMC free article] [PubMed]
  • Yamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct 888, 187–196.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography