PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1362.
Published online 2009 October 17. doi:  10.1107/S1600536809041075
PMCID: PMC2971227

Methano­ldinitrato[N-(2-pyridylmethyl­ene)aniline]copper(II)

Abstract

The Cu atom in the title compound, [Cu(NO3)2(C12H10N2)(CH3OH)], adopts a square-pyramidal geometry, being ligated by two N atoms of the bidentate N-(2-pyridylmethyl­ene)­aniline (ppma) ligand, two O atoms of NO3 ligands and one O atom of a methanol molecule, which occupies the apical position. The phenyl ring on the ppma ligand is twisted out of the pyridine plane, forming a dihedral angle of 42.9 (1)°. In the crystal, inter­molecular O—H(...)O hydrogen bonds between methanol and NO3 ligands form an extensive one-dimensional network extending parallel to [100].

Related literature

For general background on magnetic materials, see: Lu et al. (2007 [triangle]); Mukherjee et al. (2008 [triangle]); Tao et al. (2004 [triangle]). For related structures, see: Lee et al. (2008 [triangle]); Addison et al. (1984 [triangle]). For general background on electron paramagnetic resonance spectra, see: Mohapatra et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1362-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C12H10N2)(CH4O)]
  • M r = 401.82
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1362-efi1.jpg
  • a = 14.5924 (13) Å
  • b = 13.4826 (12) Å
  • c = 17.0060 (13) Å
  • V = 3345.8 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.35 mm−1
  • T = 295 K
  • 0.20 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.76, T max = 0.823
  • 17118 measured reflections
  • 3289 independent reflections
  • 2098 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.101
  • S = 1.03
  • 3289 reflections
  • 229 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041075/jh2108sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041075/jh2108Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the Ministry of Knowledge Economy, Korea, under the Information Technology Research Center support program supervised by the National Industry Promotion Agency [grant No. NIPA-2009-(C1090–0902–0022)].

supplementary crystallographic information

Comment

Schiff base complexes of transition metal complexes have great importance over the years due to their versatility of the steric and electronic properties and their possible applications as molecular based magnetic materials (Lu et al., 2007; Mukherjee et al., 2008; Tao et al., 2004). As a part of this research, we reported copper halides complexes with N2 bidentate Schiff base ligand derived from 2-pyridinecarboxylaldehyde and benzylamine(Lee et al., 2008), in which the reaction of copper(II) chloride leads to a dimeric complex whereas copper(II) bromide affords a monomeric copper complex. In this study, we reacted copper(II) nitrate with the similar Schiff base in methanol and prepared a monomeric penta-coordinated copper(II) complex, Cu(ppma)(NO3)2(CH3OH) (I).

In the title compound, the Cu atom adopts a square pyramidal geometry, being ligated by two N atoms of the bidentate N-(2-pyridylmethylene)aniline (ppma) ligand, two O atoms of NO3 ligands, and one O atom of methanol which occupies the apical position. The angles around Cu atom at the basal position are in the range of 80.8 (1) - 96.6 (1)°. The calculated trigonality index, τ = 0.12, indicates that the Cu atom is in an almost square pyramidal geometry (Addison et al., 1984). The phenyl ring on the ppma ligand is twisted out of the pyridine plane, and forms a dihedral angle of 42.9 (1) °. The intermolecular O23—H23—O18i [symmetry code: (i) x - 1/2, -y + 3/2, -z] hydrogen bond allows to form an extensive one-dimensional network, which stabilizes the crystal structure.

EPR (electron paramagnetic resonance) spectra of I compound were obtained both for solid and for frozen glass samples (toluene/methanol) at 77 K. The powder EPR spectrum exhibits isotropic feature, <g>=2.151. The solution EPR spectrum exhibits well defined hyperfine structure with parallel and perpendicular components, g(parallel) = 2.328, g(perpendicular) = 2.065 and A(parallel) =142x10-4 cm-1, typically indicating a dx2-y2 ground state, g(parallel) > g(perpendicular) > 2.0023 (Mohapatra et al., 2008). The magnetic susceptibilities of the title compound were collected as a function of temperatures (4 - 300 K). The magnetic susceptibility data increases as the temperatures decrease exhibiting a paramagnetic behavior. Magnetic susceptibility data follows the Curie-Weiss law showing the features of a discrete monomeric complex. A linear regression results in a Curie-Weiss temperature θ = 0.55 K and a Curie constant C = 0.45 cm3 K mol-1.

Experimental

N-(2-pyridylmethylene)aniline was synthesized from the direct reaction of 2-pyridinecarboxyaldehyde and aniline. 2-Pyridinecarboxyaldehyde (2 mmol) dissolved in 20 ml of absolute methanol was added dropwise to a methanolic solution of aniline (2 mmol) and then refluxed overnight. After cooling to room temperature, a solution of Cu(NO3)2 3H2O (2 mmol) in 20 ml of absolute methanol was added to the mixed solution of 2-pyridinecarboxyaldehyde and aniline (ppma solution). The solution was changed to dark green color immediately. The resulting solution was allowed to stand at room temperature. The green crystals were obtained by slow evaporation in methanol.

Refinement

The H23 atom was located in a difference map and refined freely with O—H = 0.69 (3) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 - 0.96 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids.

Crystal data

[Cu(NO3)2(C12H10N2)(CH4O)]F(000) = 1640
Mr = 401.82Dx = 1.595 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4394 reflections
a = 14.5924 (13) Åθ = 2.4–22.8°
b = 13.4826 (12) ŵ = 1.35 mm1
c = 17.0060 (13) ÅT = 295 K
V = 3345.8 (5) Å3Block, green
Z = 80.2 × 0.18 × 0.14 mm

Data collection

Bruker SMART CCD area-detector diffractometer2098 reflections with I > 2σ(I)
[var phi] and ω scansRint = 0.037
Absorption correction: multi-scan (SADABS; Bruker, 2002)θmax = 26°, θmin = 2.4°
Tmin = 0.76, Tmax = 0.823h = −11→18
17118 measured reflectionsk = −10→16
3289 independent reflectionsl = −20→14

Refinement

Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038w = 1/[σ2(Fo2) + (0.0421P)2 + 1.1597P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.43 e Å3
3289 reflectionsΔρmin = −0.34 e Å3
229 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu0.22734 (3)0.80769 (3)0.05883 (2)0.04304 (16)
N10.19359 (18)0.8656 (2)−0.04406 (14)0.0443 (7)
C20.2115 (2)0.8304 (3)−0.1155 (2)0.0562 (9)
H20.24470.7718−0.11980.067*
C30.1832 (3)0.8766 (3)−0.1831 (2)0.0630 (10)
H30.19610.8489−0.23190.076*
C40.1354 (3)0.9642 (3)−0.1777 (2)0.0611 (10)
H40.1160.9971−0.22280.073*
C50.1169 (2)1.0027 (2)−0.10368 (19)0.0529 (9)
H50.08591.0626−0.09830.063*
C60.1449 (2)0.9511 (2)−0.03880 (18)0.0416 (8)
C70.1207 (2)0.9783 (2)0.04160 (18)0.0438 (8)
H70.08981.03710.05220.053*
N80.14329 (17)0.91931 (18)0.09677 (14)0.0423 (6)
C90.1175 (2)0.9408 (2)0.17667 (18)0.0466 (8)
C100.1211 (2)1.0360 (3)0.2067 (2)0.0627 (10)
H100.14171.08830.17580.075*
C110.0938 (3)1.0521 (4)0.2833 (3)0.0858 (14)
H110.09481.11610.30380.103*
C120.0653 (3)0.9751 (5)0.3291 (3)0.0951 (16)
H120.04860.98670.38110.114*
C130.0611 (3)0.8808 (4)0.2995 (2)0.0864 (14)
H130.04040.82910.3310.104*
C140.0876 (2)0.8620 (3)0.2226 (2)0.0650 (10)
H140.08540.7980.20220.078*
O150.32671 (16)0.71875 (15)0.01603 (14)0.0542 (6)
N160.4040 (2)0.7588 (2)0.00143 (16)0.0540 (7)
O170.40926 (18)0.8491 (2)−0.00598 (15)0.0781 (7)
O180.47131 (18)0.70493 (19)−0.0054 (2)0.0903 (10)
O190.26151 (16)0.75883 (17)0.16300 (13)0.0561 (6)
N200.3146 (2)0.8210 (2)0.19904 (18)0.0565 (8)
O210.33689 (17)0.89636 (19)0.16336 (14)0.0714 (8)
O220.3405 (2)0.80158 (19)0.26547 (15)0.0846 (9)
O230.1281 (2)0.6864 (2)0.0490 (2)0.0773 (10)
H230.084 (2)0.704 (3)0.042 (2)0.049 (13)*
C240.1395 (3)0.5872 (3)0.0572 (3)0.0998 (16)
H13A0.08190.55430.04920.15*
H13B0.16160.57290.10920.15*
H13C0.1830.56390.01910.15*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0416 (3)0.0385 (3)0.0489 (2)0.00253 (18)0.00262 (18)0.00149 (17)
N10.0430 (17)0.0432 (17)0.0469 (16)0.0001 (13)0.0024 (12)−0.0009 (12)
C20.058 (3)0.055 (2)0.056 (2)0.0043 (18)0.0079 (18)−0.0077 (18)
C30.070 (3)0.075 (3)0.044 (2)−0.004 (2)0.0028 (19)−0.0035 (19)
C40.067 (3)0.070 (3)0.047 (2)−0.008 (2)−0.0028 (18)0.0109 (18)
C50.054 (2)0.048 (2)0.057 (2)0.0029 (17)−0.0011 (18)0.0079 (17)
C60.0360 (19)0.0396 (19)0.0491 (19)−0.0035 (16)0.0025 (14)0.0018 (15)
C70.040 (2)0.0379 (19)0.053 (2)0.0028 (16)0.0016 (15)−0.0022 (15)
N80.0393 (17)0.0423 (16)0.0452 (15)−0.0030 (13)0.0036 (12)−0.0031 (12)
C90.0339 (19)0.057 (2)0.0483 (18)0.0038 (16)0.0032 (15)−0.0020 (17)
C100.052 (2)0.072 (3)0.064 (2)−0.003 (2)0.0058 (19)−0.020 (2)
C110.069 (3)0.113 (4)0.075 (3)0.004 (3)0.008 (2)−0.038 (3)
C120.068 (3)0.163 (5)0.054 (3)0.020 (3)0.010 (2)−0.021 (3)
C130.069 (3)0.128 (4)0.062 (3)0.016 (3)0.022 (2)0.023 (3)
C140.060 (3)0.072 (3)0.062 (2)0.006 (2)0.011 (2)0.007 (2)
O150.0380 (14)0.0448 (14)0.0799 (17)−0.0012 (11)0.0119 (12)0.0028 (11)
N160.048 (2)0.049 (2)0.0647 (18)−0.0012 (18)0.0070 (15)0.0009 (15)
O170.078 (2)0.0534 (16)0.103−0.0108 (15)0.0194 (16)0.0031 (15)
O180.0405 (17)0.0652 (19)0.165 (3)0.0090 (14)0.0224 (18)−0.0068 (17)
O190.0627 (16)0.0481 (15)0.0577 (14)−0.0049 (13)−0.0082 (12)0.0056 (12)
N200.050 (2)0.067 (2)0.0519 (18)0.0023 (16)0.0013 (16)0.0093 (17)
O210.072 (2)0.0728 (18)0.0689 (16)−0.0241 (15)−0.0123 (14)0.0210 (14)
O220.100 (2)0.098 (2)0.0556 (16)−0.0161 (16)−0.0205 (15)0.0193 (14)
O230.0456 (19)0.0467 (18)0.140 (3)0.0003 (15)−0.0207 (18)0.0095 (15)
C240.071 (3)0.050 (3)0.179 (5)−0.009 (2)−0.013 (3)0.019 (3)

Geometric parameters (Å, °)

Cu—O191.955 (2)C10—C111.378 (5)
Cu—N11.979 (2)C10—H100.93
Cu—O152.017 (2)C11—C121.365 (6)
Cu—N82.046 (2)C11—H110.93
Cu—O232.191 (3)C12—C131.369 (6)
N1—C21.330 (4)C12—H120.93
N1—C61.356 (4)C13—C141.388 (5)
C2—C31.370 (5)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.375 (5)O15—N161.274 (3)
C3—H30.93N16—O171.226 (3)
C4—C51.388 (4)N16—O181.227 (3)
C4—H40.93O19—N201.295 (3)
C5—C61.367 (4)N20—O221.220 (3)
C5—H50.93N20—O211.228 (3)
C6—C71.459 (4)O23—C241.355 (4)
C7—N81.273 (4)O23—H230.69 (3)
C7—H70.93C24—H13A0.96
N8—C91.439 (4)C24—H13B0.96
C9—C101.382 (4)C24—H13C0.96
C9—C141.389 (4)
O19—Cu—N1176.44 (10)C10—C9—N8121.8 (3)
O19—Cu—O1586.75 (9)C14—C9—N8117.3 (3)
N1—Cu—O1595.43 (10)C11—C10—C9119.0 (4)
O19—Cu—N896.60 (10)C11—C10—H10120.5
N1—Cu—N880.75 (10)C9—C10—H10120.5
O15—Cu—N8169.09 (10)C12—C11—C10120.5 (4)
O19—Cu—O2389.20 (11)C12—C11—H11119.8
N1—Cu—O2393.60 (11)C10—C11—H11119.8
O15—Cu—O2390.21 (11)C11—C12—C13120.7 (4)
N8—Cu—O23100.20 (11)C11—C12—H12119.7
C2—N1—C6117.8 (3)C13—C12—H12119.7
C2—N1—Cu128.2 (2)C12—C13—C14120.3 (4)
C6—N1—Cu114.0 (2)C12—C13—H13119.9
N1—C2—C3123.0 (3)C14—C13—H13119.9
N1—C2—H2118.5C13—C14—C9118.5 (4)
C3—C2—H2118.5C13—C14—H14120.7
C2—C3—C4119.1 (3)C9—C14—H14120.7
C2—C3—H3120.4N16—O15—Cu117.0 (2)
C4—C3—H3120.4O17—N16—O18121.8 (3)
C3—C4—C5118.7 (3)O17—N16—O15119.7 (3)
C3—C4—H4120.7O18—N16—O15118.4 (3)
C5—C4—H4120.7N20—O19—Cu111.31 (19)
C6—C5—C4118.9 (3)O22—N20—O21123.6 (3)
C6—C5—H5120.5O22—N20—O19119.0 (3)
C4—C5—H5120.5O21—N20—O19117.4 (3)
N1—C6—C5122.4 (3)C24—O23—Cu130.4 (3)
N1—C6—C7113.7 (3)C24—O23—H23118 (3)
C5—C6—C7123.8 (3)Cu—O23—H23112 (3)
N8—C7—C6118.1 (3)O23—C24—H13A109.5
N8—C7—H7121O23—C24—H13B109.5
C6—C7—H7121H13A—C24—H13B109.5
C7—N8—C9120.1 (3)O23—C24—H13C109.5
C7—N8—Cu112.5 (2)H13A—C24—H13C109.5
C9—N8—Cu127.1 (2)H13B—C24—H13C109.5
C10—C9—C14121.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O23—H23···O18i0.69 (3)2.15 (3)2.817 (4)162 (4)

Symmetry codes: (i) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2108).

References

  • Addison, A. W., Rao, T. N., Reedjik, J., van Rijin, T. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lee, H. W., Sengottuvelan, N., Seo, H. J., Choi, J. S., Kang, S. K. & Kim, Y. I. (2008). Bull. Korean Chem. Soc.29, 1711–1716.
  • Lu, J. W., Huang, Y. H., Lo, S. I. & Wei, H. H. (2007). Inorg. Chem. Commun.10, 1210–1213.
  • Mohapatra, S. C., Tehlan, S., Hundal, M. S. & Mathur, P. (2008). Inorg. Chim. Acta, 361, 1897–1907.
  • Mukherjee, P., Drew, M. G. B., Estrader, M., Diaz, C. & Ghosh, A. (2008). Inorg. Chim. Acta, 361, 161–172.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tao, R. J., Mei, C. Z., Zang, S. Q., Wang, Q. L., Niu, J. Y. & Liao, D. Z. (2004). Inorg. Chim. Acta, 357, 1985–1990.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography