PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2651.
Published online 2009 October 3. doi:  10.1107/S1600536809039737
PMCID: PMC2971226

1-Azido­ethoxy-2,3,4,6-tetra-O-acetyl-β-d-glucoside

Abstract

In the title compound, C16H23N3O10, the galactopyran­oside ring adopts a chair conformation. All the non-H substituents are situated in equatorial positions. There are short intramol­ecular C—H(...)O contacts and an intermolecular C—H(...)O inter­action in the structure.

Related literature

For renewable compounds generated by living organisms that can be turned into useful macromolecular materials, see: Gandini (2008 [triangle]). For industrial applications of lignin, see: Gandini & Belgacem (2002 [triangle]). For attempts to obtain new polyurethanes between lignin and saccharide, see: Hatakeyama & Hatakeyama (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2651-scheme1.jpg

Experimental

Crystal data

  • C16H23N3O10
  • M r = 417.37
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2651-efi1.jpg
  • a = 6.9730 (14) Å
  • b = 14.747 (3) Å
  • c = 19.916 (4) Å
  • V = 2048.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.967, T max = 0.989
  • 3276 measured reflections
  • 2152 independent reflections
  • 1428 reflections with I > 2σ(I)
  • R int = 0.036
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.156
  • S = 1.06
  • 2152 reflections
  • 266 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039737/fb2162sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039737/fb2162Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the President of the Chinese Academy of Forestry Foundation (CAFYBB2008009).

supplementary crystallographic information

Comment

The incessant biological activity in living organisms generates a multitude of compounds, including a variety of monomers and polymers such as saccharide, cellulose, hemicellulose, lignin and so on. More and more scientists are exclusively concerned with those renewable compounds that can be turned into useful macromolecular materials (Gandini, 2008). However, most of lignin as a by-product from the paper industry is being discharged into the environment. This causes serious environmental pollution. Also for this reason industrial applications of lignin have attracted a great deal of attention (Gandini & Belgacem, 2002).

In attempt to obtain new polyurethanes between lignin and saccharide (Hatakeyama & Hatakeyama, 2005) and to optimize their properties, the title structure, a new galactopyranoside, 2-azidoethoxy 2,3,4,6-tetra-O-acetyl-β-D-glucopyranoside, has been synthesized and its structure determined. The galactopyranoside ring adopts a chair conformation. There are present four intramolecular C-H···O interactionss (Tab. 1). Each of them forms four five-membered rings. In the crystal structure, the molecules are linked into chains along the a axis by C—H···O interactions (Fig. 2 and Tab. 1).

Experimental

β-D-glucose pentaacetate (5.0 g, 12.8 mmol) was dissolved in 25 ml of the anhydrous CH2Cl2. 2-azidoethanol (1.9 g, 22.3 mmol) was added to this solution by a syringe. The resulting solution was stirred under argon and cooled to 273 K. BF3.Et2O (2.1 ml, 16.7 mmol) was then added dropwise at 273 K. The mixture was stirred for 1 h at 273 K and then overnight at room temperature. The mixture was diluted with 50 ml CH2Cl2 and washed with cold water and with saturated aqueous NaHCO3 at room temperature, dried over anhydrous sodium sulfate, and concentrated in vacuo to obtain a fawn crude residue that was purified by column chromatography (hexane/EtOAc 2:1) and recrystallization from the solution of hexane/EtOAc (1:1) in order to obtain a pure solid of the title compound. Colourless single crystals suitable for X-ray crystallographic analysis were grown by slow evaporation from an ethyl acetate solution of the title compound.

Refinement

All the H atoms were located in a difference electron density map. Nevertheless, all the hydrogens were placed into the idealized positions and constrained by riding hydrogen approximation. Cmethyl—Hmethyl=0.96; Cmethylene—Hmethylene=0.97; Cmethine—Hmethine=0.98 Å. UisoHmethyl=1.5UeqCmethyl, UisoHmethylene=1.2UeqCmethylene, UisoHmethine=1.2UeqCmethine. All the methyl groups were allowed to rotate freely about their respective C—C bonds during the refinement. Only 1/8 of the reciprocal space has been measured, therefore Friedel pairs for merging were not available.

Figures

Fig. 1.
The title molecule with the atom-labelling scheme. The displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
The packing of the title molecules, viewed along the c axis.

Crystal data

C16H23N3O10F(000) = 880
Mr = 417.37Dx = 1.354 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.9730 (14) Åθ = 9–12°
b = 14.747 (3) ŵ = 0.11 mm1
c = 19.916 (4) ÅT = 293 K
V = 2048.0 (7) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
graphiteθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = −8→8
Absorption correction: ψ scan (North et al., 1968)k = 0→17
Tmin = 0.967, Tmax = 0.989l = 0→23
3276 measured reflections3 standard reflections every 200 reflections
2152 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.156H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0842P)2 + 0.0427P] where P = (Fo2 + 2Fc2)/3
2152 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = −0.20 e Å3
88 constraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7582 (5)0.6069 (2)0.05712 (18)0.0722 (10)
N11.0447 (9)0.6905 (4)0.1458 (3)0.0961 (17)
N21.0080 (9)0.6436 (4)0.1911 (4)0.0987 (18)
N30.9676 (16)0.6099 (5)0.2393 (4)0.167 (3)
O20.3076 (8)0.2527 (2)0.0360 (2)0.1001 (14)
C11.0868 (10)0.6426 (5)0.0830 (3)0.103 (2)
H1B1.11280.57940.09290.123*
H1C1.20140.66840.06300.123*
O30.2457 (5)0.40003 (19)0.05186 (15)0.0560 (8)
C20.9245 (9)0.6483 (5)0.0333 (3)0.0917 (19)
H2A0.89780.71150.02370.110*
H2B0.96310.6193−0.00830.110*
O40.4451 (8)0.5373 (3)0.18472 (18)0.0927 (13)
C30.0437 (9)0.2978 (4)0.1058 (3)0.0820 (17)
H3A0.01470.23440.10990.123*
H3B−0.06470.32900.08720.123*
H3C0.07240.32230.14930.123*
O50.6040 (5)0.4482 (2)0.11247 (15)0.0626 (9)
C40.2113 (9)0.3097 (3)0.0612 (2)0.0647 (13)
O60.2735 (5)0.40451 (19)−0.09523 (15)0.0554 (8)
C50.6697 (10)0.4265 (4)0.2258 (3)0.0854 (18)
H5A0.63390.44650.27000.128*
H5B0.80480.43570.21950.128*
H5C0.64030.36330.22100.128*
O7−0.0125 (5)0.4706 (3)−0.1036 (2)0.0817 (11)
C60.5624 (9)0.4791 (3)0.1751 (3)0.0636 (13)
O80.2457 (7)0.6740 (3)−0.23285 (18)0.0903 (13)
C70.0537 (10)0.3357 (4)−0.1658 (3)0.0838 (18)
H7A−0.07770.3390−0.17990.126*
H7B0.07600.2789−0.14360.126*
H7C0.13600.3404−0.20430.126*
O90.2845 (5)0.63294 (19)−0.12588 (15)0.0557 (8)
C80.0953 (7)0.4111 (3)−0.1188 (2)0.0541 (11)
O100.5898 (5)0.5863 (2)−0.03885 (16)0.0603 (8)
C90.0336 (9)0.7316 (3)−0.1504 (3)0.0789 (17)
H9A−0.02100.7666−0.18630.118*
H9B0.07620.7716−0.11540.118*
H9C−0.06140.6909−0.13290.118*
C100.1978 (8)0.6792 (3)−0.1759 (3)0.0626 (13)
C110.4448 (8)0.5767 (3)−0.1452 (2)0.0636 (13)
H11A0.55020.6141−0.16080.076*
H11B0.40760.5362−0.18130.076*
C120.5050 (7)0.5231 (3)−0.0851 (2)0.0525 (11)
H12A0.60270.4791−0.09870.063*
C130.6755 (7)0.5413 (3)0.0177 (2)0.0570 (12)
H13A0.77140.49700.00280.068*
C140.5181 (7)0.4956 (3)0.0570 (2)0.0520 (11)
H14A0.42900.54150.07400.062*
C150.4101 (7)0.4284 (3)0.0141 (2)0.0509 (11)
H15A0.49180.37610.00390.061*
C160.3439 (6)0.4733 (3)−0.0504 (2)0.0492 (11)
H16A0.24030.5161−0.04030.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.061 (2)0.093 (2)0.063 (2)−0.014 (2)0.0038 (19)−0.021 (2)
N10.115 (4)0.086 (3)0.087 (4)−0.004 (4)−0.025 (4)−0.003 (3)
N20.098 (4)0.085 (4)0.114 (5)−0.005 (3)−0.024 (4)0.023 (3)
N30.200 (9)0.142 (6)0.158 (7)0.013 (7)−0.005 (8)0.058 (6)
O20.148 (4)0.0562 (19)0.097 (3)0.010 (3)0.026 (3)0.005 (2)
C10.064 (4)0.126 (5)0.117 (6)−0.009 (4)0.006 (4)−0.040 (5)
O30.0622 (18)0.0532 (16)0.0526 (18)0.0000 (16)0.0079 (16)−0.0005 (15)
C20.071 (4)0.127 (5)0.077 (4)−0.024 (4)0.013 (4)0.001 (4)
O40.136 (4)0.092 (3)0.050 (2)0.034 (3)0.001 (2)−0.016 (2)
C30.088 (4)0.092 (4)0.066 (4)−0.022 (3)−0.001 (3)0.003 (3)
O50.073 (2)0.075 (2)0.0399 (17)0.0134 (19)−0.0103 (18)−0.0057 (15)
C40.093 (4)0.054 (3)0.047 (3)−0.005 (3)−0.004 (3)0.006 (2)
O60.065 (2)0.0550 (16)0.0466 (17)0.0097 (16)−0.0055 (17)−0.0104 (15)
C50.109 (5)0.097 (4)0.050 (3)0.000 (4)−0.011 (3)0.006 (3)
O70.062 (2)0.098 (3)0.085 (3)0.011 (2)−0.016 (2)−0.014 (2)
C60.077 (3)0.064 (3)0.049 (3)−0.002 (3)−0.011 (3)−0.008 (3)
O80.107 (3)0.118 (3)0.046 (2)0.020 (3)0.003 (2)0.012 (2)
C70.106 (5)0.090 (4)0.055 (3)−0.018 (4)−0.007 (3)−0.013 (3)
O90.062 (2)0.0580 (16)0.0475 (17)0.0098 (16)0.0027 (16)0.0056 (15)
C80.053 (3)0.066 (3)0.044 (3)0.002 (3)0.000 (2)−0.002 (2)
O100.0659 (19)0.0599 (17)0.0551 (19)0.0019 (17)−0.0010 (18)0.0001 (16)
C90.094 (4)0.072 (3)0.071 (4)0.018 (3)−0.011 (3)0.004 (3)
C100.074 (3)0.059 (3)0.054 (3)−0.004 (3)−0.012 (3)0.003 (3)
C110.072 (3)0.069 (3)0.051 (3)0.002 (3)0.014 (3)0.001 (2)
C120.057 (3)0.053 (2)0.048 (3)0.006 (2)0.002 (2)−0.007 (2)
C130.053 (3)0.065 (3)0.054 (3)0.003 (2)−0.006 (2)−0.009 (2)
C140.055 (3)0.063 (3)0.039 (2)0.008 (2)0.000 (2)−0.002 (2)
C150.052 (3)0.055 (2)0.046 (2)0.011 (2)−0.005 (2)−0.006 (2)
C160.053 (2)0.051 (2)0.043 (3)0.012 (2)−0.004 (2)−0.010 (2)

Geometric parameters (Å, °)

O1—C131.373 (5)O7—C81.194 (5)
O1—C21.394 (7)O8—C101.184 (6)
N1—N21.165 (7)C7—C81.482 (6)
N1—C11.467 (7)C7—H7A0.9600
N2—N31.117 (9)C7—H7B0.9600
O2—C41.188 (6)C7—H7C0.9600
C1—C21.505 (9)O9—C101.351 (6)
C1—H1B0.9700O9—C111.445 (6)
C1—H1C0.9700O10—C121.437 (5)
O3—C41.366 (5)O10—C131.437 (5)
O3—C151.433 (5)C9—C101.472 (7)
C2—H2A0.9700C9—H9A0.9600
C2—H2B0.9700C9—H9B0.9600
O4—C61.201 (6)C9—H9C0.9600
C3—C41.478 (8)C11—C121.495 (6)
C3—H3A0.9600C11—H11A0.9700
C3—H3B0.9600C11—H11B0.9700
C3—H3C0.9600C12—C161.509 (6)
O5—C61.360 (6)C12—H12A0.9800
O5—C141.439 (5)C13—C141.507 (7)
O6—C81.332 (6)C13—H13A0.9800
O6—C161.437 (5)C14—C151.509 (6)
C5—C61.476 (8)C14—H14A0.9800
C5—H5A0.9600C15—C161.518 (6)
C5—H5B0.9600C15—H15A0.9800
C5—H5C0.9600C16—H16A0.9800
C13—O1—C2117.6 (4)C12—O10—C13111.9 (3)
N2—N1—C1114.7 (6)C10—C9—H9A109.5
N3—N2—N1170.0 (9)C10—C9—H9B109.5
N1—C1—C2112.5 (6)H9A—C9—H9B109.5
N1—C1—H1B109.1C10—C9—H9C109.5
C2—C1—H1B109.1H9A—C9—H9C109.5
N1—C1—H1C109.1H9B—C9—H9C109.5
C2—C1—H1C109.1O8—C10—O9123.2 (5)
H1B—C1—H1C107.8O8—C10—C9125.8 (5)
C4—O3—C15119.8 (4)O9—C10—C9111.0 (4)
O1—C2—C1112.2 (5)O9—C11—C12107.9 (4)
O1—C2—H2A109.2O9—C11—H11A110.1
C1—C2—H2A109.2C12—C11—H11A110.1
O1—C2—H2B109.2O9—C11—H11B110.1
C1—C2—H2B109.2C12—C11—H11B110.1
H2A—C2—H2B107.9H11A—C11—H11B108.4
C4—C3—H3A109.5O10—C12—C11106.6 (3)
C4—C3—H3B109.5O10—C12—C16109.2 (4)
H3A—C3—H3B109.5C11—C12—C16114.5 (4)
C4—C3—H3C109.5O10—C12—H12A108.8
H3A—C3—H3C109.5C11—C12—H12A108.8
H3B—C3—H3C109.5C16—C12—H12A108.8
C6—O5—C14117.0 (4)O1—C13—O10107.3 (4)
O2—C4—O3122.3 (5)O1—C13—C14108.9 (4)
O2—C4—C3128.1 (5)O10—C13—C14108.1 (4)
O3—C4—C3109.7 (5)O1—C13—H13A110.8
C8—O6—C16119.1 (4)O10—C13—H13A110.8
C6—C5—H5A109.5C14—C13—H13A110.8
C6—C5—H5B109.5O5—C14—C13108.2 (4)
H5A—C5—H5B109.5O5—C14—C15108.9 (3)
C6—C5—H5C109.5C13—C14—C15111.3 (4)
H5A—C5—H5C109.5O5—C14—H14A109.5
H5B—C5—H5C109.5C13—C14—H14A109.5
O4—C6—O5122.0 (5)C15—C14—H14A109.5
O4—C6—C5127.7 (5)O3—C15—C14107.1 (3)
O5—C6—C5110.1 (5)O3—C15—C16109.2 (4)
C8—C7—H7A109.5C14—C15—C16110.1 (3)
C8—C7—H7B109.5O3—C15—H15A110.1
H7A—C7—H7B109.5C14—C15—H15A110.1
C8—C7—H7C109.5C16—C15—H15A110.1
H7A—C7—H7C109.5O6—C16—C12108.3 (3)
H7B—C7—H7C109.5O6—C16—C15108.8 (3)
C10—O9—C11116.1 (4)C12—C16—C15111.9 (4)
O7—C8—O6123.5 (4)O6—C16—H16A109.3
O7—C8—C7126.0 (5)C12—C16—H16A109.3
O6—C8—C7110.5 (5)C15—C16—H16A109.3
C1—N1—N2—N3−175 (5)C6—O5—C14—C15−125.1 (4)
N2—N1—C1—C2104.9 (7)O1—C13—C14—O5−65.4 (5)
C13—O1—C2—C1−125.6 (6)O10—C13—C14—O5178.3 (3)
N1—C1—C2—O1−62.8 (8)O1—C13—C14—C15175.0 (4)
C15—O3—C4—O2−4.1 (7)O10—C13—C14—C1558.7 (5)
C15—O3—C4—C3175.6 (4)C4—O3—C15—C14−127.5 (4)
C14—O5—C6—O47.2 (7)C4—O3—C15—C16113.3 (4)
C14—O5—C6—C5−176.9 (4)O5—C14—C15—O370.1 (4)
C16—O6—C8—O7−1.7 (7)C13—C14—C15—O3−170.6 (3)
C16—O6—C8—C7177.9 (4)O5—C14—C15—C16−171.2 (3)
C11—O9—C10—O81.2 (7)C13—C14—C15—C16−52.0 (5)
C11—O9—C10—C9178.3 (4)C8—O6—C16—C12−114.6 (4)
C10—O9—C11—C12−173.2 (4)C8—O6—C16—C15123.6 (4)
C13—O10—C12—C11−172.7 (4)O10—C12—C16—O6−174.5 (3)
C13—O10—C12—C1663.1 (5)C11—C12—C16—O666.0 (4)
O9—C11—C12—O10−69.9 (5)O10—C12—C16—C15−54.6 (4)
O9—C11—C12—C1651.0 (5)C11—C12—C16—C15−174.1 (4)
C2—O1—C13—O10−72.1 (6)O3—C15—C16—O6−73.1 (4)
C2—O1—C13—C14171.2 (4)C14—C15—C16—O6169.5 (3)
C12—O10—C13—O1177.7 (3)O3—C15—C16—C12167.2 (3)
C12—O10—C13—C14−65.0 (5)C14—C15—C16—C1249.9 (5)
C6—O5—C14—C13113.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O40.982.212.666 (6)107
C15—H15A···O20.982.322.723 (6)104
C16—H16A···O70.982.272.702 (6)106
C16—H16A···O90.982.442.824 (5)103
C9—H9B···O1i0.962.483.402 (6)160

Symmetry codes: (i) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2162).

References

  • Bruker (2000). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gandini, A. (2008). Macromolecules, 41, 9491–9504.
  • Gandini, A. & Belgacem, M. N. (2002). J. Polym. Environ.10, 105–114.
  • Hatakeyama, H. & Hatakeyama, T. (2005). Macromol. Symp.224, 219–226.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography