PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2884.
Published online 2009 October 28. doi:  10.1107/S160053680904330X
PMCID: PMC2971222

c-3,t-3-Dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one

Abstract

In the title compound, C19H22N2O, the diazepine ring adopts a distorted chair conformation. One of the N—H groups forms an inter­molecular N—H(...)O hydrogen bond generating an R 2 2(8) graph-set motif. The other N—H group does not form a hydrogen bond.

Related literature

For general background to diazepine derivatives, see: Hirokawa et al. (1998 [triangle]); Jeyaraman & Ponnuswamy (1997 [triangle]). For asymmetry parameters, see: Nardelli (1983 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For the synthesis, see: Jeyaraman et al. (1995 [triangle]); Ponnuswamy et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2884-scheme1.jpg

Experimental

Crystal data

  • C19H22N2O
  • M r = 294.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2884-efi1.jpg
  • a = 6.7354 (4) Å
  • b = 10.6867 (6) Å
  • c = 11.4186 (7) Å
  • α = 82.191 (3)°
  • β = 88.218 (4)°
  • γ = 80.317 (3)°
  • V = 802.65 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 K
  • 0.25 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.982, T max = 0.985
  • 17703 measured reflections
  • 3958 independent reflections
  • 3196 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.167
  • S = 1.08
  • 3958 reflections
  • 209 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904330X/bt5093sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904330X/bt5093Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection, and the management of Kandaswami Kandar’s College, Velur, Namakkal, TN, India, for the encouragement to pursue the programme. SS thanks the UGC for a fellowship under the Rajiv Gandhi National Fellowship Scheme.

supplementary crystallographic information

Comment

1,4-Diazepines are of considerable importance due to their wide spectrum of biological activities (Hirokawa et al., 1998). Various substituted diazepin-5-ones have been synthesized using Schmidt rearrangement from the corresponding piperdin-4-ones and their stereochemistry has been reported (Jeyaraman & Ponnuswamy, 1997). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound, namely c-3,t-3-dimethyl-r-2,c-7-diphenyl-1,4-diazepan-5-one, has been carried out.

The ORTEP diagram of the title compound is shown in Fig. 1. The diazepine ring adopts a distorted chair conformation with puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.348 (2)Å, q3 = 0.677 (2)Å, [var phi]2 = 105.2 (3)°, [var phi]3 =99.9 (2)° and Δs(N5)= 12.2 (2)°. The sum of the bond angles around the N1 atom (359.4°) of the diazepine ring is in sp2-hybridization, whereas the other atom, N5 (331.1°), is in accordance with sp3-hybridization.

The crystal packing is stabilized by intermolecular N—H···O interactions. The molecules at (x, y, z) and (-x+1, -y+1, -z+1) are linked through intermolecular N1—H1···O1 hydrogen bonds into cyclic centrosymmetric R22(8) dimers (Bernstein et al. 1995).

Experimental

In a typical reaction, c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one was first converted into its hydrochloride and the dry, powdered c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one hydrochloride (10.0 g) was added, in portions, to cold conc. H2SO4 (25.0 ml). The temperature of the solution was allowed to rise to 25°C and NaN3 (3.0 g) was added in portions with vigorous stirring. The solution was poured into crushed ice and cold NaOH solution (2 N) was added slowly with stirring until the pH was 8. The separated white solid was filtered and crystallized using ethanol and pet-ether (60–80°C) in the ratio of 9.5:0.5 (Jeyaraman et al., 1995; Ponnuswamy et al., 2006).

Refinement

The amino H atoms were refined and the other H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.
Perspective view of the molecule showing the displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

C19H22N2OZ = 2
Mr = 294.39F(000) = 316
Triclinic, P1Dx = 1.218 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7354 (4) ÅCell parameters from 3562 reflections
b = 10.6867 (6) Åθ = 2.5–28.4°
c = 11.4186 (7) ŵ = 0.08 mm1
α = 82.191 (3)°T = 293 K
β = 88.218 (4)°Block, colorless
γ = 80.317 (3)°0.25 × 0.20 × 0.20 mm
V = 802.65 (8) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer3958 independent reflections
Radiation source: fine-focus sealed tube3196 reflections with I > 2σ(I)
graphiteRint = 0.029
ω and [var phi] scansθmax = 28.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −8→8
Tmin = 0.982, Tmax = 0.985k = −14→14
17703 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0617P)2 + 0.472P] where P = (Fo2 + 2Fc2)/3
3958 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3091 (2)0.63384 (13)0.48222 (13)0.0459 (4)
N10.3506 (2)0.48085 (15)0.36366 (15)0.0377 (4)
H10.453 (4)0.443 (2)0.412 (2)0.053 (6)*
C20.2588 (3)0.59310 (17)0.39357 (16)0.0350 (4)
C30.0919 (3)0.67316 (17)0.31721 (18)0.0390 (4)
H3A0.14280.68790.23700.047*
H3B0.05730.75580.34530.047*
C4−0.0997 (3)0.61476 (16)0.31459 (16)0.0332 (4)
H4−0.13740.58420.39570.040*
N5−0.0711 (2)0.50751 (14)0.24522 (14)0.0358 (4)
H5−0.191 (3)0.4839 (19)0.2375 (18)0.037 (5)*
C60.0652 (2)0.39247 (15)0.29509 (16)0.0313 (4)
H60.04100.38030.38060.038*
C70.2915 (3)0.40542 (17)0.27481 (16)0.0343 (4)
C8−0.2685 (3)0.71712 (16)0.26079 (17)0.0350 (4)
C9−0.3855 (3)0.7958 (2)0.3313 (2)0.0503 (5)
H9−0.36290.78420.41230.060*
C10−0.5362 (4)0.8919 (2)0.2834 (3)0.0650 (7)
H10−0.61300.94470.33220.078*
C11−0.5727 (3)0.9095 (2)0.1653 (3)0.0652 (7)
H11−0.67470.97360.13330.078*
C12−0.4587 (4)0.8324 (2)0.0943 (3)0.0635 (7)
H12−0.48280.84450.01350.076*
C13−0.3075 (3)0.7363 (2)0.1414 (2)0.0482 (5)
H13−0.23140.68400.09190.058*
C140.0070 (3)0.27925 (17)0.24575 (18)0.0370 (4)
C15−0.0316 (3)0.2835 (2)0.1270 (2)0.0499 (5)
H15−0.01860.35660.07500.060*
C16−0.0896 (4)0.1794 (3)0.0848 (3)0.0680 (8)
H16−0.11380.18280.00460.082*
C17−0.1115 (4)0.0715 (3)0.1608 (3)0.0749 (9)
H17−0.15010.00170.13250.090*
C18−0.0763 (4)0.0676 (2)0.2778 (3)0.0692 (8)
H18−0.0918−0.00530.32960.083*
C19−0.0175 (3)0.17043 (19)0.3214 (2)0.0510 (5)
H190.00550.16620.40180.061*
C200.3380 (3)0.4639 (2)0.14928 (18)0.0493 (5)
H20A0.25360.54580.13100.074*
H20B0.31270.40820.09430.074*
H20C0.47680.47460.14370.074*
C210.4225 (3)0.2742 (2)0.3012 (2)0.0470 (5)
H21A0.56140.28410.30290.071*
H21B0.40420.22300.24070.071*
H21C0.38450.23280.37640.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0448 (8)0.0471 (8)0.0484 (8)−0.0047 (6)−0.0165 (6)−0.0155 (6)
N10.0325 (8)0.0402 (8)0.0414 (9)−0.0027 (6)−0.0140 (7)−0.0102 (6)
C20.0321 (9)0.0366 (9)0.0381 (9)−0.0098 (7)−0.0081 (7)−0.0045 (7)
C30.0395 (10)0.0304 (8)0.0481 (11)−0.0066 (7)−0.0146 (8)−0.0044 (7)
C40.0335 (9)0.0301 (8)0.0354 (9)−0.0036 (6)−0.0043 (7)−0.0032 (6)
N50.0279 (7)0.0329 (7)0.0481 (9)−0.0036 (6)−0.0112 (6)−0.0098 (6)
C60.0273 (8)0.0301 (8)0.0368 (9)−0.0034 (6)−0.0037 (6)−0.0060 (6)
C70.0279 (8)0.0397 (9)0.0376 (9)−0.0056 (7)−0.0060 (7)−0.0113 (7)
C80.0292 (8)0.0309 (8)0.0446 (10)−0.0061 (6)−0.0036 (7)−0.0022 (7)
C90.0463 (12)0.0448 (11)0.0570 (13)−0.0004 (9)0.0059 (10)−0.0072 (9)
C100.0439 (12)0.0467 (12)0.099 (2)0.0065 (10)0.0125 (13)−0.0097 (13)
C110.0375 (12)0.0496 (12)0.100 (2)0.0004 (9)−0.0148 (12)0.0137 (13)
C120.0550 (14)0.0604 (14)0.0699 (16)−0.0067 (11)−0.0253 (12)0.0121 (12)
C130.0457 (11)0.0468 (11)0.0497 (12)−0.0016 (9)−0.0111 (9)−0.0032 (9)
C140.0239 (8)0.0342 (8)0.0545 (11)−0.0040 (6)−0.0018 (7)−0.0125 (8)
C150.0437 (11)0.0544 (12)0.0573 (13)−0.0126 (9)−0.0076 (10)−0.0202 (10)
C160.0493 (13)0.0785 (18)0.0888 (19)−0.0147 (12)−0.0088 (13)−0.0494 (16)
C170.0434 (13)0.0535 (14)0.141 (3)−0.0130 (10)−0.0009 (15)−0.0523 (17)
C180.0470 (13)0.0324 (10)0.129 (3)−0.0067 (9)−0.0004 (15)−0.0145 (13)
C190.0399 (11)0.0357 (10)0.0763 (16)−0.0042 (8)−0.0006 (10)−0.0068 (9)
C200.0415 (11)0.0707 (14)0.0408 (11)−0.0208 (10)0.0030 (8)−0.0116 (10)
C210.0320 (10)0.0484 (11)0.0615 (13)0.0035 (8)−0.0095 (9)−0.0205 (9)

Geometric parameters (Å, °)

O1—C21.233 (2)C10—H100.9300
N1—C21.337 (2)C11—C121.362 (4)
N1—C71.481 (2)C11—H110.9300
N1—H10.90 (3)C12—C131.383 (3)
C2—C31.513 (2)C12—H120.9300
C3—C41.528 (2)C13—H130.9300
C3—H3A0.9700C14—C191.381 (3)
C3—H3B0.9700C14—C151.382 (3)
C4—N51.463 (2)C15—C161.388 (3)
C4—C81.519 (2)C15—H150.9300
C4—H40.9800C16—C171.372 (4)
N5—C61.463 (2)C16—H160.9300
N5—H50.89 (2)C17—C181.358 (4)
C6—C141.515 (2)C17—H170.9300
C6—C71.561 (2)C18—C191.385 (3)
C6—H60.9800C18—H180.9300
C7—C211.523 (3)C19—H190.9300
C7—C201.529 (3)C20—H20A0.9600
C8—C131.377 (3)C20—H20B0.9600
C8—C91.378 (3)C20—H20C0.9600
C9—C101.384 (3)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—C111.360 (4)C21—H21C0.9600
C2—N1—C7129.23 (15)C9—C10—H10119.8
C2—N1—H1113.2 (15)C10—C11—C12119.5 (2)
C7—N1—H1117.0 (15)C10—C11—H11120.2
O1—C2—N1121.10 (16)C12—C11—H11120.2
O1—C2—C3118.95 (16)C11—C12—C13120.6 (2)
N1—C2—C3119.94 (16)C11—C12—H12119.7
C2—C3—C4115.13 (15)C13—C12—H12119.7
C2—C3—H3A108.5C8—C13—C12120.7 (2)
C4—C3—H3A108.5C8—C13—H13119.7
C2—C3—H3B108.5C12—C13—H13119.7
C4—C3—H3B108.5C19—C14—C15118.53 (19)
H3A—C3—H3B107.5C19—C14—C6119.65 (19)
N5—C4—C8109.15 (14)C15—C14—C6121.76 (18)
N5—C4—C3111.58 (15)C14—C15—C16120.5 (2)
C8—C4—C3109.06 (14)C14—C15—H15119.8
N5—C4—H4109.0C16—C15—H15119.8
C8—C4—H4109.0C17—C16—C15120.3 (3)
C3—C4—H4109.0C17—C16—H16119.8
C4—N5—C6116.12 (14)C15—C16—H16119.8
C4—N5—H5108.4 (13)C18—C17—C16119.4 (2)
C6—N5—H5106.6 (13)C18—C17—H17120.3
N5—C6—C14107.83 (13)C16—C17—H17120.3
N5—C6—C7112.49 (14)C17—C18—C19121.1 (3)
C14—C6—C7113.70 (14)C17—C18—H18119.5
N5—C6—H6107.5C19—C18—H18119.5
C14—C6—H6107.5C14—C19—C18120.2 (2)
C7—C6—H6107.5C14—C19—H19119.9
N1—C7—C21104.82 (14)C18—C19—H19119.9
N1—C7—C20111.22 (16)C7—C20—H20A109.5
C21—C7—C20108.80 (17)C7—C20—H20B109.5
N1—C7—C6108.63 (14)H20A—C20—H20B109.5
C21—C7—C6109.66 (15)C7—C20—H20C109.5
C20—C7—C6113.36 (15)H20A—C20—H20C109.5
C13—C8—C9117.95 (18)H20B—C20—H20C109.5
C13—C8—C4121.90 (17)C7—C21—H21A109.5
C9—C8—C4120.15 (18)C7—C21—H21B109.5
C8—C9—C10120.9 (2)H21A—C21—H21B109.5
C8—C9—H9119.5C7—C21—H21C109.5
C10—C9—H9119.5H21A—C21—H21C109.5
C11—C10—C9120.3 (2)H21B—C21—H21C109.5
C11—C10—H10119.8
C7—N1—C2—O1168.29 (18)C3—C4—C8—C9−87.3 (2)
C7—N1—C2—C3−12.5 (3)C13—C8—C9—C10−0.6 (3)
O1—C2—C3—C4−114.2 (2)C4—C8—C9—C10178.2 (2)
N1—C2—C3—C466.6 (2)C8—C9—C10—C110.6 (4)
C2—C3—C4—N5−73.1 (2)C9—C10—C11—C12−0.5 (4)
C2—C3—C4—C8166.24 (16)C10—C11—C12—C130.4 (4)
C8—C4—N5—C6−171.21 (15)C9—C8—C13—C120.5 (3)
C3—C4—N5—C668.2 (2)C4—C8—C13—C12−178.3 (2)
C4—N5—C6—C14155.20 (16)C11—C12—C13—C8−0.4 (4)
C4—N5—C6—C7−78.64 (19)N5—C6—C14—C19−131.39 (18)
C2—N1—C7—C21−166.7 (2)C7—C6—C14—C19103.2 (2)
C2—N1—C7—C2075.9 (2)N5—C6—C14—C1545.6 (2)
C2—N1—C7—C6−49.5 (3)C7—C6—C14—C15−79.8 (2)
N5—C6—C7—N179.63 (18)C19—C14—C15—C16−1.3 (3)
C14—C6—C7—N1−157.44 (15)C6—C14—C15—C16−178.35 (19)
N5—C6—C7—C21−166.35 (15)C14—C15—C16—C170.7 (4)
C14—C6—C7—C21−43.4 (2)C15—C16—C17—C180.1 (4)
N5—C6—C7—C20−44.5 (2)C16—C17—C18—C19−0.4 (4)
C14—C6—C7—C2078.4 (2)C15—C14—C19—C181.1 (3)
N5—C4—C8—C13−30.7 (2)C6—C14—C19—C18178.18 (18)
C3—C4—C8—C1391.4 (2)C17—C18—C19—C14−0.2 (3)
N5—C4—C8—C9150.53 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (3)2.02 (3)2.928 (2)177 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5093).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hirokawa, Y., Morie, T., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett.8, 619–624. [PubMed]
  • Jeyaraman, R. & Ponnuswamy, S. (1997). J. Org. Chem.62, 7984–7990. [PubMed]
  • Jeyaraman, R., Senthil kumar, U. P. & Bigler, P. (1995). J. Org. Chem.60, 7461–7470.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Ponnuswamy, S., Murugadoss, R., Jeyaraman, R., Thiruvalluvar, A. & Parthasarathi, V. (2006). Indian J. Chem. Sect. B, 45, 2059–2070.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography