PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2792.
Published online 2009 October 17. doi:  10.1107/S1600536809042081
PMCID: PMC2971216

(E)-N′-[1-(4-Bromo­phen­yl)ethyl­idene]-2-hydroxy­benzohydrazide

Abstract

In the title compound, C15H13BrN2O2, the two aromatic rings form a dihedral angle of 7.9 (1)° and an intra­molecular N—H(...)O hydrogen bond influences the mol­ecular conformation. In the crystal, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains propagated in [001]. The crystal packing exhibits also π–π inter­actions, which pair mol­ecules into centrosymmetric dimers with short inter­molecular distances of 3.671 (4) Å between the centroids of aromatic rings.

Related literature

For the biological properties of Schiff base ligands, see: Jeewoth et al. (1999 [triangle]). For related structures, see: Fun et al. (2008 [triangle]); Cui et al. (2009 [triangle]); Nie (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2792-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O2
  • M r = 333.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2792-efi1.jpg
  • a = 27.805 (3) Å
  • b = 7.9061 (9) Å
  • c = 13.5002 (15) Å
  • β = 113.344 (2)°
  • V = 2724.8 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 3.02 mm−1
  • T = 298 K
  • 0.39 × 0.14 × 0.12 mm

Data collection

  • Siemens SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.386, T max = 0.713
  • 6480 measured reflections
  • 2397 independent reflections
  • 1602 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.111
  • S = 0.95
  • 2397 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.74 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042081/cv2623sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042081/cv2623Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the Foundation of Binzhou University (grant No. BZXYLG200609).

supplementary crystallographic information

Comment

Schiff base compounds have received considerable attention during the last decades due to their structures and biological properties (Jeewoth et al., 1999). We report here the crystal structure of the title Schiff base compound (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to the values observed in similar compounds (Nie, 2008; Fun et al., 2008; Cui et al., 2009). The C9=N2 bond length in the molecule is 1.282 (4) °, showing the double-bond character. The dihedral angle between the benzene ring C2-C7 and the benzene ring C10-C15 is 7.9 (1)°, indicating that two these rings are approximately coplanar.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001]. The crystal packing exhibits also π···π interactions, which pair molecules into centrosymmetric dimers with short intermolecular distance of 3.671 (4) Å between the centroids of aromatic rings.

Experimental

Salicyloyl hydrazide (5.0 mmol), 20 ml e thanol and 4-bromoacetophenone (5.0 mmol) were mixed in 50 ml flash. After refluxing 3 h, the resulting mixture was cooled to room temperature, and recrystallized from ethanol. Elemental analysis: calculated for C15H13BrN2O2: C 54.07, H 3.93, N 8.41%; found: C 54.21, H 3.85, N 8.52%.

Refinement

All H atoms were placed in geometrically idealized positions (O—H 0.82, N—H 0.86 and C—H = 0.93–0.96 Å) and treated as riding, with Uiso(H) = 1.2U-1.5Ueq of the parent atom.

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C15H13BrN2O2F(000) = 1344
Mr = 333.18Dx = 1.624 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 27.805 (3) ÅCell parameters from 1955 reflections
b = 7.9061 (9) Åθ = 2.7–26.0°
c = 13.5002 (15) ŵ = 3.02 mm1
β = 113.344 (2)°T = 298 K
V = 2724.8 (5) Å3Block, colourless
Z = 80.39 × 0.14 × 0.12 mm

Data collection

Siemens SMART APEX CCD area-detector diffractometer2397 independent reflections
Radiation source: fine-focus sealed tube1602 reflections with I > 2σ(I)
graphiteRint = 0.071
phi and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −32→32
Tmin = 0.386, Tmax = 0.713k = −5→9
6480 measured reflectionsl = −16→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3
2397 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.74 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.171700 (16)1.05278 (6)1.41157 (3)0.0585 (2)
N10.92749 (11)0.6137 (4)0.9225 (2)0.0342 (8)
H10.92910.61700.86020.041*
N20.96688 (11)0.6843 (4)1.0103 (2)0.0325 (7)
O10.88354 (11)0.5298 (4)1.02232 (19)0.0555 (9)
O20.88245 (10)0.5567 (4)0.71317 (18)0.0434 (7)
H20.88210.52860.65450.065*
C10.88626 (13)0.5393 (5)0.9337 (3)0.0329 (9)
C20.84455 (14)0.4681 (5)0.8353 (3)0.0317 (9)
C30.84277 (13)0.4765 (5)0.7298 (3)0.0325 (9)
C40.80124 (15)0.4043 (6)0.6450 (3)0.0450 (11)
H40.79980.41270.57520.054*
C50.76224 (15)0.3206 (6)0.6629 (3)0.0467 (11)
H50.73470.27220.60530.056*
C60.76374 (15)0.3079 (5)0.7662 (3)0.0461 (11)
H60.73760.24960.77870.055*
C70.80399 (14)0.3818 (5)0.8496 (3)0.0394 (10)
H70.80440.37440.91870.047*
C81.01117 (15)0.7562 (6)0.8889 (3)0.0453 (11)
H8A1.00560.64540.85730.068*
H8B1.04570.79430.90030.068*
H8C0.98580.83310.84130.068*
C91.00561 (13)0.7498 (5)0.9952 (2)0.0314 (9)
C101.04721 (13)0.8237 (5)1.0939 (3)0.0312 (9)
C111.04697 (14)0.7866 (5)1.1949 (3)0.0387 (10)
H111.02160.71371.19930.046*
C121.08322 (15)0.8551 (6)1.2876 (3)0.0441 (10)
H121.08220.82971.35400.053*
C131.12116 (14)0.9617 (5)1.2819 (3)0.0376 (9)
C141.12300 (16)0.9996 (6)1.1834 (3)0.0446 (10)
H141.14871.07131.17950.054*
C151.08594 (14)0.9290 (5)1.0911 (3)0.0393 (10)
H151.08730.95371.02480.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0516 (3)0.0628 (4)0.0480 (3)−0.0060 (3)0.0059 (2)−0.0110 (2)
N10.0355 (17)0.045 (2)0.0228 (15)0.0001 (16)0.0125 (13)−0.0005 (14)
N20.0320 (17)0.039 (2)0.0259 (16)0.0008 (15)0.0105 (14)−0.0028 (14)
O10.0562 (18)0.088 (3)0.0281 (14)−0.0174 (17)0.0231 (13)−0.0038 (15)
O20.0502 (16)0.060 (2)0.0236 (12)−0.0083 (15)0.0181 (12)−0.0062 (12)
C10.036 (2)0.038 (2)0.0268 (19)0.0080 (19)0.0146 (16)0.0022 (17)
C20.0311 (19)0.032 (2)0.0301 (19)0.0081 (18)0.0104 (16)0.0016 (17)
C30.034 (2)0.035 (2)0.0305 (19)0.0059 (18)0.0151 (17)0.0000 (17)
C40.050 (3)0.054 (3)0.027 (2)0.003 (2)0.0108 (19)−0.0065 (19)
C50.034 (2)0.048 (3)0.048 (2)−0.001 (2)0.0052 (19)−0.009 (2)
C60.038 (2)0.049 (3)0.053 (3)−0.002 (2)0.020 (2)−0.002 (2)
C70.037 (2)0.044 (3)0.036 (2)0.001 (2)0.0145 (18)0.0041 (19)
C80.048 (2)0.054 (3)0.039 (2)−0.003 (2)0.0221 (19)−0.005 (2)
C90.037 (2)0.032 (2)0.0277 (19)0.0079 (18)0.0145 (17)0.0014 (16)
C100.031 (2)0.031 (2)0.0338 (19)0.0078 (18)0.0158 (16)0.0012 (17)
C110.040 (2)0.044 (3)0.035 (2)−0.005 (2)0.0175 (18)−0.0008 (19)
C120.051 (2)0.052 (3)0.030 (2)0.004 (2)0.0164 (19)0.0058 (19)
C130.032 (2)0.036 (2)0.041 (2)0.0022 (19)0.0106 (17)−0.0046 (18)
C140.042 (2)0.043 (3)0.049 (2)−0.005 (2)0.018 (2)−0.001 (2)
C150.043 (2)0.044 (3)0.036 (2)0.000 (2)0.0210 (18)0.0068 (19)

Geometric parameters (Å, °)

Br1—C131.899 (4)C6—H60.9300
N1—C11.349 (5)C7—H70.9300
N1—N21.374 (4)C8—C91.504 (4)
N1—H10.8600C8—H8A0.9600
N2—C91.282 (4)C8—H8B0.9600
O1—C11.231 (4)C8—H8C0.9600
O2—C31.366 (4)C9—C101.494 (5)
O2—H20.8200C10—C151.374 (5)
C1—C21.485 (5)C10—C111.398 (5)
C2—C71.395 (5)C11—C121.369 (5)
C2—C31.407 (5)C11—H110.9300
C3—C41.386 (5)C12—C131.376 (5)
C4—C51.371 (5)C12—H120.9300
C4—H40.9300C13—C141.384 (5)
C5—C61.383 (5)C14—C151.382 (5)
C5—H50.9300C14—H140.9300
C6—C71.365 (5)C15—H150.9300
C1—N1—N2120.2 (3)C9—C8—H8B109.5
C1—N1—H1119.9H8A—C8—H8B109.5
N2—N1—H1119.9C9—C8—H8C109.5
C9—N2—N1117.3 (3)H8A—C8—H8C109.5
C3—O2—H2109.5H8B—C8—H8C109.5
O1—C1—N1121.2 (3)N2—C9—C10114.8 (3)
O1—C1—C2121.3 (3)N2—C9—C8125.2 (3)
N1—C1—C2117.6 (3)C10—C9—C8120.1 (3)
C7—C2—C3117.2 (3)C15—C10—C11117.5 (3)
C7—C2—C1116.7 (3)C15—C10—C9123.4 (3)
C3—C2—C1126.1 (3)C11—C10—C9119.1 (3)
O2—C3—C4121.2 (3)C12—C11—C10121.5 (4)
O2—C3—C2118.8 (3)C12—C11—H11119.3
C4—C3—C2120.0 (3)C10—C11—H11119.3
C5—C4—C3120.8 (3)C11—C12—C13119.7 (3)
C5—C4—H4119.6C11—C12—H12120.2
C3—C4—H4119.6C13—C12—H12120.2
C4—C5—C6120.2 (4)C12—C13—C14120.5 (3)
C4—C5—H5119.9C12—C13—Br1119.0 (3)
C6—C5—H5119.9C14—C13—Br1120.5 (3)
C7—C6—C5119.2 (4)C15—C14—C13118.8 (4)
C7—C6—H6120.4C15—C14—H14120.6
C5—C6—H6120.4C13—C14—H14120.6
C6—C7—C2122.6 (3)C10—C15—C14122.2 (3)
C6—C7—H7118.7C10—C15—H15118.9
C2—C7—H7118.7C14—C15—H15118.9
C9—C8—H8A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.952.637 (3)136
O2—H2···O1i0.821.862.677 (3)178

Symmetry codes: (i) x, −y+1, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2623).

References

  • Cui, C., Meng, Q. & Wang, Y. (2009). Acta Cryst. E65, o2472. [PMC free article] [PubMed]
  • Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595. [PMC free article] [PubMed]
  • Jeewoth, T., Bhowon, M. G. & Wah, H. L. K. (1999). Transition Met. Chem.24, 445–448.
  • Nie, Y. (2008). Acta Cryst. E64, o471. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography