PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2836.
Published online 2009 October 23. doi:  10.1107/S1600536809042871
PMCID: PMC2971215

1-(2-Bromo­benz­yl)-3-isopropyl­benz­imid­azolin-2-one

Abstract

In the structure of the title compound, C17H17BrN2O, the central phenyl and imidazol-2-one rings are coplanar (dihedral angle between planes of 0.73 (11)°). The angles subtended by the substituents on the N atoms of the imidazol-2-one ring range from 109.71 (14)° to 128.53 (15) due to steric hindrance of these substituents with the phenyl H atoms. The carbonyl O and Br both make two weak C—H(...)O and C—H(...)Br inter­actions with two adjacent mol­ecules, thus forming an three-dimensional array.

Related literature

For benzimidazolones as precursors to important pharmacologically active compounds, see: Biagi et al. (2001 [triangle]). For the benzimidazolones as sources of stable carbenes, see: Albéniz et al. (2002 [triangle]); Denk et al. (2001 [triangle]); Jarrar & Fataftah (1977 [triangle]); Manjare et al. (2009 [triangle]); Çetinkaya et al. (1998 [triangle]). For the preparation, see: Kuhn et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2836-scheme1.jpg

Experimental

Crystal data

  • C17H17BrN2O
  • M r = 345.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2836-efi1.jpg
  • a = 12.1417 (3) Å
  • b = 10.1146 (3) Å
  • c = 12.2008 (3) Å
  • β = 95.763 (1)°
  • V = 1490.79 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.76 mm−1
  • T = 203 K
  • 0.38 × 0.24 × 0.17 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.631, T max = 0.746
  • 26524 measured reflections
  • 3771 independent reflections
  • 3039 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.075
  • S = 0.99
  • 3771 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.75 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042871/om2287sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042871/om2287Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HBS is grateful to the Department of Science and Technology (DST) for the award of a Ramanna Fellowship. STM thanks the CSIR for a JRF/SRF fellowship. RJB wishes to acknowledge the United States–India Educational Foundation for a Fulbright–Nehru Teaching Fellowship for the 2009–2010 academic year.

supplementary crystallographic information

Comment

There has been much interest in benzimidazolones as precursors to important pharmacologically active compounds (Biagi et al. 2001) and also as precursors to stable carbene derivatives (Albéniz et al.2002; Çetinkaya et al. 1998; Denk et al. 2001; Manjare et al. 2009). We report the structure of the title compound, C17H17BrN2O, 1, prepared as part of a study of the reactivity of related selenones (Manjare et al. 2009) and with a view to stabilizing a monomeric selenium dioxide derivative. The product was obtained as the minor product from the selenone by reaction with H2O2 (Fig. 3).

As shown in Figure 1, the central phenyl and imidazol-2-one rings are coplanar (dihedral angle between planes of 0.73 (11)°). The benzoimidazol-2-one moiety is thus a planar system (r.m.s. deviation from plane of 0.0069 (1) Å). The phenyl ring of the substituent bromobenzyl group makes a dihedral angle of 80.64 (3) with this plane. In addition the C atoms attached to N1 and N2 are also coplanar with this ring. Within the imidazole ring the C—N and C—C distances range from 1.380 (2) to 1.402 (2) and thus are significantly shorter than single bonds. However, the bonds from N1 and N2 to the C atoms of the substituents are 1.468 (2) and 1.448 (2) which are in the range found for C—N single bonds. Thus the bond lengths in this ring are similar to those found in structures of dihydro-imidazol-2-one derivatives (Denk et al., 2001). The angles subtended by the substituents on the N's of the imidazol-2-one ring range from 109.71 (14)° to 128.53 (15) due to steric hindrance of these substituents with the phenyl H atoms.

The carbonyl O and Br both make two weak C–H···O and C–H···Br interactions with two adjacent molecules thus forming an 3-D array.

Experimental

The title compound was obtained by the addition of hydrogen peroxide (0.21 ml, 1.82 mmol) to the solution of selenone 2 (0.15 g, 0.37 mmol; Kuhn et al., 1996) in chloroform (15 ml) at room temperature. Sodium sulfate was added to the reaction mixture then the solution was filtered and evaporated. Compound 1 was obtained as minor product along with the compound 3 (Scheme 1).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 and 0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5 Ueq(CH3).

Figures

Fig. 1.
The molecular structure of C17H17BrN2O the showing the atom numbering scheme and 50% probability displacement ellipsoids.
Fig. 2.
The molecular packing for C17H17BrN2O viewed down the c axis. The C—H···O interactions are shown by dashed lines.

Crystal data

C17H17BrN2OF(000) = 704
Mr = 345.24Dx = 1.538 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9903 reflections
a = 12.1417 (3) Åθ = 2.6–28.4°
b = 10.1146 (3) ŵ = 2.76 mm1
c = 12.2008 (3) ÅT = 203 K
β = 95.763 (1)°Prism, colorless
V = 1490.79 (7) Å30.38 × 0.24 × 0.17 mm
Z = 4

Data collection

Bruker APEXII diffractometer3771 independent reflections
Radiation source: fine-focus sealed tube3039 reflections with I > 2σ(I)
graphiteRint = 0.072
ω scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→16
Tmin = 0.631, Tmax = 0.746k = −12→13
26524 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.0471P)2] where P = (Fo2 + 2Fc2)/3
3771 reflections(Δ/σ)max = 0.003
192 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.037577 (14)0.582633 (17)0.249055 (14)0.01832 (8)
O10.61458 (11)0.41194 (12)0.14806 (11)0.0195 (3)
N10.66453 (12)0.58527 (14)0.26835 (12)0.0145 (3)
N20.48981 (12)0.52025 (15)0.25058 (12)0.0141 (3)
C10.95844 (14)0.46626 (18)0.33498 (14)0.0139 (4)
C21.01703 (15)0.37113 (19)0.39732 (14)0.0178 (4)
H21.09420.36420.39660.021*
C30.96085 (16)0.28571 (18)0.46116 (15)0.0199 (4)
H30.99960.22030.50410.024*
C40.84746 (16)0.29766 (19)0.46107 (15)0.0200 (4)
H40.80920.24020.50450.024*
C50.78948 (15)0.39346 (17)0.39770 (15)0.0172 (4)
H50.71240.40020.39890.021*
C60.84372 (14)0.47977 (17)0.33241 (14)0.0140 (4)
C70.78243 (15)0.58255 (17)0.25879 (15)0.0159 (4)
H7A0.81350.67000.27770.019*
H7B0.79450.56420.18200.019*
C80.60923 (14)0.66479 (17)0.33738 (13)0.0137 (4)
C90.64598 (14)0.76802 (17)0.40571 (14)0.0164 (4)
H90.72050.79480.41260.020*
C100.56824 (15)0.83047 (18)0.46372 (15)0.0186 (4)
H100.59050.90150.51050.022*
C110.45850 (16)0.79053 (18)0.45424 (15)0.0191 (4)
H110.40830.83390.49580.023*
C120.42093 (15)0.68751 (17)0.38446 (14)0.0167 (4)
H120.34620.66170.37710.020*
C130.49817 (14)0.62453 (18)0.32639 (13)0.0137 (4)
C140.59197 (14)0.49597 (17)0.21446 (14)0.0147 (4)
C150.39093 (14)0.44538 (17)0.20836 (15)0.0154 (4)
H150.41660.36910.16680.019*
C160.31692 (15)0.52811 (19)0.12750 (16)0.0207 (4)
H16A0.35690.55170.06540.031*
H16B0.29510.60790.16380.031*
H16C0.25150.47760.10170.031*
C170.32998 (17)0.38940 (19)0.30151 (16)0.0214 (4)
H17A0.38260.34660.35530.032*
H17B0.27550.32540.27180.032*
H17C0.29320.46060.33670.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01045 (11)0.02172 (12)0.02339 (12)−0.00227 (7)0.00473 (7)0.00112 (7)
O10.0122 (7)0.0221 (7)0.0245 (7)0.0023 (5)0.0027 (5)−0.0052 (5)
N10.0074 (7)0.0186 (8)0.0172 (7)−0.0002 (6)0.0004 (6)0.0008 (6)
N20.0073 (7)0.0155 (8)0.0195 (8)0.0003 (6)0.0009 (6)−0.0027 (6)
C10.0107 (9)0.0150 (9)0.0160 (8)−0.0022 (7)0.0015 (7)−0.0036 (7)
C20.0112 (9)0.0207 (10)0.0212 (9)0.0027 (8)0.0002 (7)−0.0020 (8)
C30.0187 (10)0.0192 (10)0.0212 (9)0.0063 (8)−0.0010 (8)0.0013 (7)
C40.0209 (10)0.0196 (10)0.0195 (9)−0.0021 (8)0.0027 (7)0.0027 (7)
C50.0102 (9)0.0216 (10)0.0197 (9)−0.0006 (7)0.0014 (7)0.0010 (7)
C60.0104 (9)0.0144 (9)0.0170 (9)−0.0003 (7)0.0001 (7)−0.0029 (7)
C70.0080 (9)0.0197 (10)0.0200 (9)−0.0001 (7)0.0010 (7)0.0023 (7)
C80.0097 (8)0.0154 (9)0.0159 (8)0.0029 (7)0.0007 (6)0.0050 (7)
C90.0125 (9)0.0166 (9)0.0193 (9)−0.0035 (7)−0.0028 (7)0.0037 (7)
C100.0189 (10)0.0164 (9)0.0197 (9)−0.0019 (8)−0.0016 (7)−0.0020 (7)
C110.0179 (10)0.0181 (10)0.0215 (9)0.0044 (8)0.0030 (7)−0.0006 (7)
C120.0091 (8)0.0183 (9)0.0226 (9)0.0003 (7)0.0011 (7)0.0003 (7)
C130.0133 (9)0.0121 (9)0.0152 (8)−0.0003 (7)−0.0003 (7)0.0015 (7)
C140.0109 (9)0.0154 (9)0.0176 (9)0.0024 (7)0.0001 (7)0.0029 (7)
C150.0089 (9)0.0151 (9)0.0222 (9)−0.0018 (7)0.0010 (7)−0.0025 (7)
C160.0138 (9)0.0215 (10)0.0258 (10)−0.0002 (8)−0.0024 (8)−0.0001 (8)
C170.0178 (10)0.0178 (10)0.0293 (10)−0.0032 (8)0.0056 (8)0.0015 (8)

Geometric parameters (Å, °)

Br1—C11.9000 (18)C7—H7B0.9800
O1—C141.224 (2)C8—C91.382 (2)
N1—C141.381 (2)C8—C131.402 (2)
N1—C81.386 (2)C9—C101.387 (3)
N1—C71.448 (2)C9—H90.9400
N2—C141.380 (2)C10—C111.386 (3)
N2—C131.400 (2)C10—H100.9400
N2—C151.468 (2)C11—C121.393 (3)
C1—C21.379 (3)C11—H110.9400
C1—C61.397 (2)C12—C131.386 (2)
C2—C31.388 (3)C12—H120.9400
C2—H20.9400C15—C161.518 (3)
C3—C41.382 (3)C15—C171.526 (2)
C3—H30.9400C15—H150.9900
C4—C51.387 (3)C16—H16A0.9700
C4—H40.9400C16—H16B0.9700
C5—C61.391 (2)C16—H16C0.9700
C5—H50.9400C17—H17A0.9700
C6—C71.519 (2)C17—H17B0.9700
C7—H7A0.9800C17—H17C0.9700
C14—N1—C8110.12 (14)C10—C9—H9121.4
C14—N1—C7122.53 (15)C11—C10—C9121.48 (17)
C8—N1—C7127.09 (15)C11—C10—H10119.3
C14—N2—C13109.71 (14)C9—C10—H10119.3
C14—N2—C15121.73 (14)C10—C11—C12121.47 (17)
C13—N2—C15128.53 (15)C10—C11—H11119.3
C2—C1—C6122.59 (16)C12—C11—H11119.3
C2—C1—Br1118.37 (13)C13—C12—C11117.35 (16)
C6—C1—Br1119.04 (14)C13—C12—H12121.3
C1—C2—C3119.25 (17)C11—C12—H12121.3
C1—C2—H2120.4C12—C13—N2132.55 (16)
C3—C2—H2120.4C12—C13—C8120.75 (16)
C4—C3—C2119.41 (17)N2—C13—C8106.70 (15)
C4—C3—H3120.3O1—C14—N2127.12 (17)
C2—C3—H3120.3O1—C14—N1126.46 (16)
C3—C4—C5120.77 (17)N2—C14—N1106.41 (15)
C3—C4—H4119.6N2—C15—C16110.71 (14)
C5—C4—H4119.6N2—C15—C17111.76 (15)
C4—C5—C6120.97 (17)C16—C15—C17112.89 (15)
C4—C5—H5119.5N2—C15—H15107.0
C6—C5—H5119.5C16—C15—H15107.0
C5—C6—C1117.00 (16)C17—C15—H15107.0
C5—C6—C7122.41 (16)C15—C16—H16A109.5
C1—C6—C7120.56 (16)C15—C16—H16B109.5
N1—C7—C6113.26 (14)H16A—C16—H16B109.5
N1—C7—H7A108.9C15—C16—H16C109.5
C6—C7—H7A108.9H16A—C16—H16C109.5
N1—C7—H7B108.9H16B—C16—H16C109.5
C6—C7—H7B108.9C15—C17—H17A109.5
H7A—C7—H7B107.7C15—C17—H17B109.5
C9—C8—N1131.17 (16)H17A—C17—H17B109.5
C9—C8—C13121.76 (16)C15—C17—H17C109.5
N1—C8—C13107.05 (15)H17A—C17—H17C109.5
C8—C9—C10117.18 (16)H17B—C17—H17C109.5
C8—C9—H9121.4
C6—C1—C2—C3−0.6 (3)C10—C11—C12—C131.3 (3)
Br1—C1—C2—C3179.61 (13)C11—C12—C13—N2−179.69 (18)
C1—C2—C3—C40.0 (3)C11—C12—C13—C8−0.6 (3)
C2—C3—C4—C50.3 (3)C14—N2—C13—C12178.84 (18)
C3—C4—C5—C60.2 (3)C15—N2—C13—C120.7 (3)
C4—C5—C6—C1−0.8 (3)C14—N2—C13—C8−0.3 (2)
C4—C5—C6—C7177.72 (17)C15—N2—C13—C8−178.43 (16)
C2—C1—C6—C51.0 (3)C9—C8—C13—C12−0.1 (3)
Br1—C1—C6—C5−179.22 (13)N1—C8—C13—C12−178.99 (15)
C2—C1—C6—C7−177.50 (16)C9—C8—C13—N2179.17 (15)
Br1—C1—C6—C72.3 (2)N1—C8—C13—N20.29 (18)
C14—N1—C7—C6−80.5 (2)C13—N2—C14—O1−179.94 (17)
C8—N1—C7—C693.0 (2)C15—N2—C14—O1−1.7 (3)
C5—C6—C7—N13.0 (2)C13—N2—C14—N10.22 (19)
C1—C6—C7—N1−178.55 (15)C15—N2—C14—N1178.48 (14)
C14—N1—C8—C9−178.90 (17)C8—N1—C14—O1−179.87 (17)
C7—N1—C8—C96.9 (3)C7—N1—C14—O1−5.4 (3)
C14—N1—C8—C13−0.17 (19)C8—N1—C14—N2−0.03 (19)
C7—N1—C8—C13−174.36 (15)C7—N1—C14—N2174.48 (15)
N1—C8—C9—C10178.79 (17)C14—N2—C15—C16−104.36 (18)
C13—C8—C9—C100.2 (3)C13—N2—C15—C1673.5 (2)
C8—C9—C10—C110.4 (3)C14—N2—C15—C17128.87 (17)
C9—C10—C11—C12−1.2 (3)C13—N2—C15—C17−53.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.942.523.439 (2)167
C9—H9···O1ii0.942.503.374 (2)154
C10—H10···Br1iii0.943.053.6457 (18)123
C15—H15···Br1iv0.993.113.7941 (18)128

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−1/2, −y+3/2, z+1/2; (iv) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2287).

References

  • Albéniz, A. C., Espinet, P., Manrique, R. & Pérez-Mateo, A. (2002). Angew. Chem. Int. Ed.41, 2363–2366. [PubMed]
  • Biagi, G., Calderone, V., Giorgi, I., Livi, O., Scartoni, V., Baragatti, B. & Martinotti, E. (2001). Farmaco, 56, 841–849. [PubMed]
  • Bruker (2005). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Çetinkaya, B., Çetinkaya, E., Chamizo, J. A., Hitchcock, P. B., Jasaim, H. A., Küçükbay, H. & Lappert, M. F. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 2047–2054.
  • Denk, M. K., Rodezno, J. M., Gupta, S. & Lough, L. J. (2001). J. Organomet. Chem.617, 242–253.
  • Jarrar, A. A. & Fataftah, Z. (1977). Tetrahedron, 33, 2127–2129.
  • Kuhn, N., Fawzi, R., Kratz, T., Steimann, M. & Henkel, G. (1996). Phosphorus Sulfur Silicon, 112, 107–119.
  • Manjare, S. T., Singh, H. B. & Butcher, R. J. (2009). Acta Cryst. E65, o2640. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography