PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1475.
Published online 2009 October 31. doi:  10.1107/S1600536809044250
PMCID: PMC2971214

(μ-trans-1,2-Di-4-pyridylethyl­ene-κ2 N:N′)bis­[bis­(N,N-diisopropyl­dithio­carbamato-κ2 S,S′)zinc(II)]

Abstract

The dinuclear title compound, [Zn2(C7H14NS2)4(C12H10N2)], is centrosymmetric about the central C=C bond. The five-coordinate Zn atom is bonded to two asymmetrically chelating dithio­carbamate ligands and a pyridine N atom to define an NS4 coordination geometry tending towards a square pyramid, with the N atom in the apical site. In the crystal structure, C—H(...)S contacts lead to supra­molecular chains.

Related literature

For background to supra­molecular polymers of zinc 1,1-dithiol­ates, see: Lai et al. (2002 [triangle]); Chen et al. (2006 [triangle]); Benson et al. (2007 [triangle]). For a related structure and the synthesis, see: Lai & Tiekink (2003 [triangle]). For additional geometrical analysis, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1475-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C7H14NS2)4(C12H10N2)]
  • M r = 1018.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1475-efi1.jpg
  • a = 8.2690 (14) Å
  • b = 11.1640 (18) Å
  • c = 14.156 (2) Å
  • α = 80.806 (10)°
  • β = 84.878 (9)°
  • γ = 72.566 (5)°
  • V = 1229.6 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.35 mm−1
  • T = 98 K
  • 0.43 × 0.35 × 0.22 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.810, T max = 1
  • 9453 measured reflections
  • 5613 independent reflections
  • 5323 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.103
  • S = 1.08
  • 5613 reflections
  • 261 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.93 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044250/hb5178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044250/hb5178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Crystal engineering studies of zinc(II) 1,1-dithiolates (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007) motivated the synthesis of the title compound (I). The dinuclear compound is centrosymmetric and features a five coordinate Zn atom. Two asymmetrically chelating dithiocarbamate ligands (range of Zn–S = 2.3655 (7) to 2.5720 (7) Å) and a pyridine-N atom (Zn–N 2.0621 (18) Å) define a NS4 donor set. The coordination geometry is distorted towards square pyramidal (SP). This is quantified by the value of τ = 1/3, which compares with the ideal values of 0.0 and 1.0 for SP and TB, respectively (Addison et al., 1984).

In the crystal structure, C—H···S contacts link molecules into a supramolecular chain, Table 1 and Fig. 2. Chains are linked into a 2-D array via C—H···π contacts where the π-system is defined by the ZnS2C chelate ring containing the S3 atom [C13—H13a···Cg = 2.86 Å, C13···Cg = 3.630 (3) Å with an angle of 136° at the H13a atom for symmetry operation 1 - x, 1 - y, -z].

Experimental

Compound (I) was prepared by following a standard literature procedure (Lai & Tiekink, 2003) whereby two equivalents of Zn(S2CN(iPr)2)2 were added to trans-1,2-bis(4-pyridyl)ethylene. Golden blocks of (I) were obtained from the slow evaporation of a chloroform/acetonitrile solution (3/1) of (I); m. pt. 513–515 K.

Refinement

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with the asymmetric unit labelled; unlabelled atoms are related by the symmetry operation -1 - x, 1 - y, 1 - z. Displacement ellipsoids are shown at the 70% probability level.
Fig. 2.
Supramolecular chain formation in (I) mediated by C—H···S contacts (orange dashed lines).

Crystal data

[Zn2(C7H14NS2)4(C12H10N2)]Z = 1
Mr = 1018.21F(000) = 536
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.2690 (14) ÅCell parameters from 4206 reflections
b = 11.1640 (18) Åθ = 2.6–40.2°
c = 14.156 (2) ŵ = 1.35 mm1
α = 80.806 (10)°T = 98 K
β = 84.878 (9)°Block, gold
γ = 72.566 (5)°0.43 × 0.35 × 0.22 mm
V = 1229.6 (3) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer5613 independent reflections
Radiation source: fine-focus sealed tube5323 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→10
Tmin = 0.810, Tmax = 1k = −13→14
9453 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0536P)2 + 0.8556P] where P = (Fo2 + 2Fc2)/3
5613 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −0.93 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn0.26250 (3)0.37511 (2)0.262741 (17)0.01954 (9)
S10.50382 (7)0.25806 (5)0.35054 (4)0.02363 (13)
S20.31926 (7)0.14535 (5)0.24038 (4)0.02353 (13)
S30.18968 (7)0.47710 (5)0.10606 (4)0.02045 (12)
S40.29663 (7)0.59904 (5)0.24745 (4)0.02168 (12)
N10.6241 (2)0.01811 (18)0.31035 (14)0.0237 (4)
N20.2671 (2)0.69764 (16)0.06127 (12)0.0191 (3)
N30.0406 (2)0.39861 (17)0.34610 (13)0.0203 (3)
C10.4978 (3)0.1269 (2)0.30131 (15)0.0193 (4)
C20.7810 (3)−0.0048 (2)0.36315 (18)0.0302 (5)
H20.8458−0.09520.35870.036*
C30.7483 (4)0.0018 (3)0.46940 (19)0.0377 (6)
H3A0.70190.09060.47980.057*
H3B0.8549−0.03620.50230.057*
H3C0.6668−0.04480.49490.057*
C40.8972 (3)0.0716 (3)0.3145 (2)0.0356 (6)
H4A0.91210.06320.24620.053*
H4B1.00780.03970.34380.053*
H4C0.84670.16100.32220.053*
C50.6116 (3)−0.0926 (2)0.26693 (19)0.0300 (5)
H50.5131−0.05960.22430.036*
C60.7657 (4)−0.1476 (3)0.2036 (2)0.0455 (7)
H6A0.7888−0.07960.15640.068*
H6B0.7436−0.21120.17030.068*
H6C0.8642−0.18740.24320.068*
C70.5682 (6)−0.1896 (3)0.3430 (2)0.0585 (10)
H7A0.6630−0.22700.38560.088*
H7B0.5470−0.25630.31290.088*
H7C0.4664−0.14900.38020.088*
C80.2528 (2)0.60365 (19)0.12971 (14)0.0173 (4)
C90.3395 (3)0.7973 (2)0.08196 (16)0.0230 (4)
H90.38090.77140.14850.028*
C100.4919 (3)0.8049 (3)0.0156 (2)0.0356 (6)
H10A0.57620.72130.01990.053*
H10B0.54220.86620.03460.053*
H10C0.45580.8323−0.05040.053*
C110.2042 (3)0.9242 (2)0.0808 (2)0.0342 (6)
H11A0.16170.95350.01620.051*
H11B0.25320.98630.09960.051*
H11C0.11050.91470.12600.051*
C120.2101 (3)0.7146 (2)−0.03856 (15)0.0230 (4)
H120.23000.7958−0.07070.028*
C130.3156 (3)0.6133 (2)−0.09784 (17)0.0302 (5)
H13A0.43620.5970−0.08730.045*
H13B0.29480.6428−0.16590.045*
H13C0.28350.5349−0.07850.045*
C140.0198 (3)0.7356 (2)−0.04095 (18)0.0271 (5)
H14A−0.00690.6565−0.01530.041*
H14B−0.01550.7621−0.10720.041*
H14C−0.04050.8017−0.00190.041*
C150.0365 (3)0.3549 (2)0.44008 (17)0.0294 (5)
H150.14040.31030.46960.035*
C16−0.1129 (3)0.3724 (2)0.49564 (16)0.0297 (5)
H16−0.11010.34070.56210.036*
C17−0.2677 (3)0.4365 (2)0.45415 (15)0.0200 (4)
C18−0.2633 (3)0.4766 (2)0.35583 (15)0.0224 (4)
H18−0.36580.51650.32360.027*
C19−0.1086 (3)0.4576 (2)0.30552 (16)0.0228 (4)
H19−0.10780.48790.23890.027*
C20−0.4262 (3)0.4592 (2)0.51333 (15)0.0207 (4)
H20−0.42300.41190.57550.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn0.01645 (14)0.02258 (14)0.01769 (14)−0.00523 (10)0.00223 (9)0.00022 (9)
S10.0225 (3)0.0227 (3)0.0275 (3)−0.0087 (2)−0.0054 (2)−0.0022 (2)
S20.0220 (3)0.0234 (3)0.0256 (3)−0.0055 (2)−0.0057 (2)−0.0041 (2)
S30.0237 (3)0.0223 (2)0.0171 (2)−0.0098 (2)0.00010 (19)−0.00222 (18)
S40.0266 (3)0.0246 (3)0.0151 (2)−0.0099 (2)−0.0018 (2)−0.00120 (18)
N10.0215 (9)0.0222 (9)0.0260 (10)−0.0062 (7)−0.0042 (7)0.0016 (7)
N20.0201 (8)0.0203 (8)0.0158 (8)−0.0052 (7)−0.0011 (7)−0.0008 (6)
N30.0180 (8)0.0230 (8)0.0184 (9)−0.0055 (7)0.0028 (7)−0.0010 (7)
C10.0183 (9)0.0232 (10)0.0165 (9)−0.0084 (8)0.0013 (7)0.0006 (7)
C20.0224 (11)0.0340 (12)0.0316 (13)−0.0067 (9)−0.0065 (9)0.0032 (10)
C30.0390 (14)0.0450 (15)0.0295 (13)−0.0128 (12)−0.0069 (11)−0.0022 (11)
C40.0227 (11)0.0472 (15)0.0392 (14)−0.0146 (11)−0.0009 (10)−0.0041 (11)
C50.0306 (12)0.0234 (11)0.0343 (13)−0.0040 (9)−0.0037 (10)−0.0054 (9)
C60.0463 (17)0.0485 (16)0.0402 (16)−0.0061 (13)0.0026 (13)−0.0187 (13)
C70.099 (3)0.0461 (18)0.0459 (18)−0.0458 (19)0.0196 (18)−0.0164 (14)
C80.0153 (9)0.0202 (9)0.0151 (9)−0.0037 (7)0.0008 (7)−0.0028 (7)
C90.0254 (11)0.0218 (10)0.0234 (11)−0.0098 (8)−0.0024 (8)−0.0015 (8)
C100.0341 (13)0.0345 (13)0.0452 (15)−0.0209 (11)0.0083 (11)−0.0099 (11)
C110.0288 (12)0.0276 (12)0.0483 (16)−0.0057 (10)−0.0019 (11)−0.0162 (11)
C120.0271 (11)0.0239 (10)0.0169 (10)−0.0066 (8)−0.0036 (8)−0.0001 (8)
C130.0356 (13)0.0348 (12)0.0190 (11)−0.0075 (10)0.0027 (9)−0.0072 (9)
C140.0249 (11)0.0269 (11)0.0293 (12)−0.0056 (9)−0.0076 (9)−0.0038 (9)
C150.0194 (10)0.0407 (13)0.0209 (11)−0.0023 (9)−0.0004 (9)0.0043 (9)
C160.0209 (11)0.0438 (14)0.0174 (11)−0.0035 (10)0.0020 (9)0.0036 (9)
C170.0182 (10)0.0221 (10)0.0209 (10)−0.0081 (8)0.0017 (8)−0.0031 (8)
C180.0175 (10)0.0281 (11)0.0187 (10)−0.0038 (8)0.0008 (8)−0.0014 (8)
C190.0192 (10)0.0289 (11)0.0183 (10)−0.0062 (8)0.0013 (8)−0.0002 (8)
C200.0197 (10)0.0262 (10)0.0162 (9)−0.0075 (8)0.0031 (8)−0.0034 (8)

Geometric parameters (Å, °)

Zn—N32.0621 (18)C7—H7A0.9800
Zn—S12.3655 (7)C7—H7B0.9800
Zn—S32.3662 (7)C7—H7C0.9800
Zn—S22.5320 (7)C9—C101.518 (3)
Zn—S42.5720 (7)C9—C111.519 (3)
S1—C11.734 (2)C9—H91.0000
S2—C11.719 (2)C10—H10A0.9800
S3—C81.733 (2)C10—H10B0.9800
S4—C81.727 (2)C10—H10C0.9800
N1—C11.340 (3)C11—H11A0.9800
N1—C21.490 (3)C11—H11B0.9800
N1—C51.499 (3)C11—H11C0.9800
N2—C81.335 (3)C12—C141.522 (3)
N2—C91.489 (3)C12—C131.525 (3)
N2—C121.495 (3)C12—H121.0000
N3—C151.343 (3)C13—H13A0.9800
N3—C191.344 (3)C13—H13B0.9800
C2—C31.514 (4)C13—H13C0.9800
C2—C41.520 (4)C14—H14A0.9800
C2—H21.0000C14—H14B0.9800
C3—H3A0.9800C14—H14C0.9800
C3—H3B0.9800C15—C161.384 (3)
C3—H3C0.9800C15—H150.9500
C4—H4A0.9800C16—C171.395 (3)
C4—H4B0.9800C16—H160.9500
C4—H4C0.9800C17—C181.393 (3)
C5—C71.501 (4)C17—C201.469 (3)
C5—C61.519 (4)C18—C191.383 (3)
C5—H51.0000C18—H180.9500
C6—H6A0.9800C19—H190.9500
C6—H6B0.9800C20—C20i1.330 (4)
C6—H6C0.9800C20—H200.9500
N3—Zn—S1112.29 (5)H7A—C7—H7C109.5
N3—Zn—S3107.48 (5)H7B—C7—H7C109.5
S1—Zn—S3140.23 (2)N2—C8—S4122.56 (15)
N3—Zn—S299.44 (5)N2—C8—S3122.09 (15)
S1—Zn—S273.21 (2)S4—C8—S3115.36 (12)
S3—Zn—S2100.61 (2)N2—C9—C10111.56 (18)
N3—Zn—S4100.23 (5)N2—C9—C11111.17 (18)
S1—Zn—S499.98 (2)C10—C9—C11112.7 (2)
S3—Zn—S472.47 (2)N2—C9—H9107.0
S2—Zn—S4160.31 (2)C10—C9—H9107.0
C1—S1—Zn87.45 (7)C11—C9—H9107.0
C1—S2—Zn82.55 (7)C9—C10—H10A109.5
C8—S3—Zn88.80 (7)C9—C10—H10B109.5
C8—S4—Zn82.47 (7)H10A—C10—H10B109.5
C1—N1—C2124.9 (2)C9—C10—H10C109.5
C1—N1—C5119.88 (19)H10A—C10—H10C109.5
C2—N1—C5115.18 (19)H10B—C10—H10C109.5
C8—N2—C9120.53 (17)C9—C11—H11A109.5
C8—N2—C12124.50 (18)C9—C11—H11B109.5
C9—N2—C12114.95 (16)H11A—C11—H11B109.5
C15—N3—C19117.40 (19)C9—C11—H11C109.5
C15—N3—Zn123.08 (15)H11A—C11—H11C109.5
C19—N3—Zn119.50 (14)H11B—C11—H11C109.5
N1—C1—S2122.16 (16)N2—C12—C14112.12 (18)
N1—C1—S1122.17 (16)N2—C12—C13113.96 (18)
S2—C1—S1115.67 (12)C14—C12—C13113.47 (19)
N1—C2—C3113.7 (2)N2—C12—H12105.4
N1—C2—C4113.0 (2)C14—C12—H12105.4
C3—C2—C4114.1 (2)C13—C12—H12105.4
N1—C2—H2104.9C12—C13—H13A109.5
C3—C2—H2104.9C12—C13—H13B109.5
C4—C2—H2104.9H13A—C13—H13B109.5
C2—C3—H3A109.5C12—C13—H13C109.5
C2—C3—H3B109.5H13A—C13—H13C109.5
H3A—C3—H3B109.5H13B—C13—H13C109.5
C2—C3—H3C109.5C12—C14—H14A109.5
H3A—C3—H3C109.5C12—C14—H14B109.5
H3B—C3—H3C109.5H14A—C14—H14B109.5
C2—C4—H4A109.5C12—C14—H14C109.5
C2—C4—H4B109.5H14A—C14—H14C109.5
H4A—C4—H4B109.5H14B—C14—H14C109.5
C2—C4—H4C109.5N3—C15—C16122.7 (2)
H4A—C4—H4C109.5N3—C15—H15118.7
H4B—C4—H4C109.5C16—C15—H15118.7
N1—C5—C7110.4 (2)C15—C16—C17120.0 (2)
N1—C5—C6113.3 (2)C15—C16—H16120.0
C7—C5—C6113.4 (3)C17—C16—H16120.0
N1—C5—H5106.4C18—C17—C16117.1 (2)
C7—C5—H5106.4C18—C17—C20122.64 (19)
C6—C5—H5106.4C16—C17—C20120.3 (2)
C5—C6—H6A109.5C19—C18—C17119.4 (2)
C5—C6—H6B109.5C19—C18—H18120.3
H6A—C6—H6B109.5C17—C18—H18120.3
C5—C6—H6C109.5N3—C19—C18123.3 (2)
H6A—C6—H6C109.5N3—C19—H19118.3
H6B—C6—H6C109.5C18—C19—H19118.3
C5—C7—H7A109.5C20i—C20—C17125.1 (3)
C5—C7—H7B109.5C20i—C20—H20117.4
H7A—C7—H7B109.5C17—C20—H20117.4
C5—C7—H7C109.5
N3—Zn—S1—C199.95 (9)C1—N1—C2—C4−68.5 (3)
S3—Zn—S1—C1−80.02 (8)C5—N1—C2—C4112.6 (2)
S2—Zn—S1—C16.43 (7)C1—N1—C5—C7−103.7 (3)
S4—Zn—S1—C1−154.56 (7)C2—N1—C5—C775.3 (3)
N3—Zn—S2—C1−117.11 (9)C1—N1—C5—C6128.0 (2)
S1—Zn—S2—C1−6.53 (7)C2—N1—C5—C6−53.1 (3)
S3—Zn—S2—C1132.96 (7)C9—N2—C8—S46.4 (3)
S4—Zn—S2—C165.65 (9)C12—N2—C8—S4−171.92 (16)
N3—Zn—S3—C8101.33 (9)C9—N2—C8—S3−173.29 (15)
S1—Zn—S3—C8−78.70 (7)C12—N2—C8—S38.4 (3)
S2—Zn—S3—C8−155.14 (7)Zn—S4—C8—N2−171.20 (18)
S4—Zn—S3—C85.83 (7)Zn—S4—C8—S38.52 (10)
N3—Zn—S4—C8−111.15 (9)Zn—S3—C8—N2170.53 (17)
S1—Zn—S4—C8133.82 (7)Zn—S3—C8—S4−9.19 (11)
S3—Zn—S4—C8−5.90 (7)C8—N2—C9—C10122.8 (2)
S2—Zn—S4—C866.08 (9)C12—N2—C9—C10−58.7 (2)
S1—Zn—N3—C151.8 (2)C8—N2—C9—C11−110.5 (2)
S3—Zn—N3—C15−178.20 (18)C12—N2—C9—C1167.9 (2)
S2—Zn—N3—C1577.44 (19)C8—N2—C12—C1461.8 (3)
S4—Zn—N3—C15−103.51 (19)C9—N2—C12—C14−116.6 (2)
S1—Zn—N3—C19−176.66 (15)C8—N2—C12—C13−68.8 (3)
S3—Zn—N3—C193.32 (17)C9—N2—C12—C13112.8 (2)
S2—Zn—N3—C19−101.04 (16)C19—N3—C15—C16−2.2 (4)
S4—Zn—N3—C1978.01 (16)Zn—N3—C15—C16179.3 (2)
C2—N1—C1—S2−179.16 (17)N3—C15—C16—C170.6 (4)
C5—N1—C1—S2−0.3 (3)C15—C16—C17—C182.3 (4)
C2—N1—C1—S10.7 (3)C15—C16—C17—C20−177.9 (2)
C5—N1—C1—S1179.53 (17)C16—C17—C18—C19−3.5 (3)
Zn—S2—C1—N1−170.64 (18)C20—C17—C18—C19176.7 (2)
Zn—S2—C1—S19.49 (10)C15—N3—C19—C180.9 (3)
Zn—S1—C1—N1170.04 (18)Zn—N3—C19—C18179.48 (17)
Zn—S1—C1—S2−10.09 (11)C17—C18—C19—N32.0 (4)
C1—N1—C2—C363.5 (3)C18—C17—C20—C20i−15.2 (4)
C5—N1—C2—C3−115.3 (2)C16—C17—C20—C20i164.9 (3)

Symmetry codes: (i) −x−1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C20—H20···S4ii0.952.773.545 (2)139

Symmetry codes: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5178).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.
  • Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem.17, 251–252.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography