PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2929.
Published online 2009 October 31. doi:  10.1107/S1600536809044328
PMCID: PMC2971211

Benzyl 2-ethyl­hexyl sulfoxide

Abstract

The mol­ecule of the title compound, C15H24OS, shows S conformations for the S atom and the asymmetric C atom of the isooctyl group. The long axes of the mol­ecules are directed along the c axis. In the crystal structure, the mol­ecules are linked by weak inter­molecular bifurcated C—H(...)O hydrogen bonds.

Related literature

For an X-ray and neutron diffraction study of benzyl tert-butyl sulfoxide, see: Iitaka et al. (1986 [triangle]). For an X-ray study of a flexible disulfoxide ligand, 1,6-bis­(benzyl­sulfin­yl)hexane, see: Li et al., (2003 [triangle]); For the use of sulfoxides in the separation of palladium from other platinum-group metals by solvent extraction, see: Xu et al. (2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2929-scheme1.jpg

Experimental

Crystal data

  • C15H24OS
  • M r = 252.41
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2929-efi1.jpg
  • a = 8.832 (2) Å
  • b = 5.2321 (14) Å
  • c = 16.588 (4) Å
  • β = 102.005 (3)°
  • V = 749.8 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 273 K
  • 0.26 × 0.22 × 0.15 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.949, T max = 0.970
  • 4539 measured reflections
  • 3119 independent reflections
  • 2527 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.095
  • S = 1.06
  • 3119 reflections
  • 156 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1074 Friedel pairs
  • Flack parameter: −0.03 (8)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044328/si2215sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044328/si2215Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (Nos. 8451063101000731 and 9151063101000037) and the NNSFC (No. 20971046).

supplementary crystallographic information

Comment

Sulfoxides have been widely used in the separation of palladium from other platinum-group metals(PGMs) by solvent extraction (Xu et al., 2006). The experimental results indicated that the title compound exhibited excellent extraction property to PGMs (Xu et al.,2007). A similar disulfoxide ligand 1,6-bis(benzylsulfinyl)hexane and its Copper(II) and Cadmium(II) dimeric complexes were obtained (Li et al.,2003).

The stucture of the title compound, (I), Fig.1, exhibit the S conformation for the sulfur atom and asymmetric carbon atom of the isooctyl group. The long axes of the molecules are directed along the c axis. Additionally, the crystal structure exhibits weak intermolecular bifurcated C—H···O hydrogen bonds (for geometric details see Table 1).

Experimental

The title compound was prepared refering to the literature method (Li et al.,2003; Iitaka et al., 1986) with little modification. Sodium hydroxide (99%, 0.273 g, 0.0068 mol) and 1-isooctyl mercaptan (1.000 g, 0.0068 mol) were dissolved in anhydrous ethanol (50 ml) at 70°C, and then benzylchloride (0.86 g, 0.0068 mol) was added to the above solution with stirring over 1 h. The solution was extracted with CH2Cl2 after addition 400 ml of water. Benzyl isooctyl sulfide(1.412 g, 0.0060 mol) was obtained after evaporation of CH2Cl2. Yield: 87%. Hydrogen peroxide (30%, 0.0043 mol) was added dropwise to a solution of benzyl isooctyl sulfide (1.000 g, 0.0042 mol) in acetic acid (60 ml) on ice bath with a vigorously stir for 1 h. 500 ml of water was added. The solution was extracted with CH2Cl2, and the product of benzyl isooctyl sulfoxide(0.943 g, 0.0037 mol) was obtained after evaporation of CH2Cl2. Yield: 88%. It was characterized by recording its infrared and NMR spectra. White single crystals of the title compound were obtained by slow evaporation of its mixed solution including n-hexane and dichloromethane.

Refinement

All H atoms were placed in calculated positions and subsequently constrained to ride on their parent atoms, with C–H distances of 0.93 Å (C-aromatic) and 0.97 Å (C-methyl). The Uiso(H) values were set at 1.2 Ueq(C aromatic) and 1.5 Ueq(C methyl).

Figures

Fig. 1.
Molecule structure of (I) with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Molecular packing of the title compound as viewed along the b axis.

Crystal data

C15H24OSF(000) = 276
Mr = 252.41Dx = 1.118 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2250 reflections
a = 8.832 (2) Åθ = 2.4–23.4°
b = 5.2321 (14) ŵ = 0.20 mm1
c = 16.588 (4) ÅT = 273 K
β = 102.005 (3)°Block, white
V = 749.8 (3) Å30.26 × 0.22 × 0.15 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer3119 independent reflections
Radiation source: fine-focus sealed tube2527 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −7→11
Tmin = 0.949, Tmax = 0.970k = −6→6
4539 measured reflectionsl = −21→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095w = 1/[σ2(Fo2) + (0.047P)2 + ] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.022
3119 reflectionsΔρmax = 0.15 e Å3
156 parametersΔρmin = −0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1074 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.48826 (6)0.23389 (10)0.70138 (3)0.05069 (16)
C10.6639 (3)0.0772 (5)0.68705 (15)0.0621 (6)
H1A0.74350.09450.73670.075*
H1B0.6441−0.10360.67690.075*
C20.7188 (2)0.1937 (4)0.61568 (12)0.0502 (5)
C30.6676 (3)0.1092 (5)0.53602 (17)0.0714 (7)
H30.5993−0.02790.52590.086*
C40.7162 (3)0.2252 (7)0.47099 (14)0.0778 (7)
H40.68020.16630.41750.093*
C100.3505 (2)0.0564 (5)0.91695 (12)0.0555 (6)
H10A0.3303−0.12520.90950.067*
H10B0.45480.07590.94920.067*
C90.3423 (2)0.1786 (4)0.83225 (11)0.0489 (5)
H90.36200.36170.84130.059*
C140.1834 (2)0.1520 (4)0.77427 (13)0.0571 (6)
H14A0.10710.23590.79960.069*
H14B0.18620.24270.72360.069*
C80.4742 (2)0.0711 (5)0.79491 (12)0.0516 (5)
H8A0.4564−0.10950.78350.062*
H8B0.57120.08840.83450.062*
C50.8165 (3)0.4249 (6)0.48481 (16)0.0722 (8)
H50.84930.50220.44090.087*
C110.2376 (3)0.1677 (5)0.96566 (13)0.0607 (6)
H11A0.25360.35090.97080.073*
H11B0.13270.13870.93540.073*
C70.8196 (3)0.3962 (5)0.62789 (14)0.0640 (6)
H70.85570.45720.68110.077*
C60.8688 (3)0.5117 (6)0.56292 (15)0.0737 (7)
H60.93750.64840.57260.088*
C120.2557 (3)0.0528 (6)1.05069 (14)0.0730 (7)
H12A0.36020.08431.08120.088*
H12B0.2417−0.13081.04550.088*
C150.1300 (3)−0.1175 (6)0.75268 (15)0.0782 (7)
H15A0.2028−0.20200.72610.117*
H15B0.0302−0.11400.71610.117*
H15C0.1228−0.20830.80200.117*
C130.1419 (3)0.1591 (7)1.09933 (15)0.0903 (11)
H13A0.15370.34121.10400.135*
H13B0.16180.08431.15330.135*
H13C0.03820.11901.07130.135*
O10.5294 (2)0.5042 (3)0.72507 (10)0.0703 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0564 (3)0.0427 (3)0.0549 (3)0.0024 (3)0.0162 (2)−0.0007 (3)
C10.0675 (15)0.0432 (14)0.0836 (16)0.0064 (12)0.0342 (13)0.0086 (12)
C20.0520 (11)0.0406 (15)0.0624 (12)0.0054 (10)0.0215 (9)0.0006 (10)
C30.0696 (15)0.0641 (17)0.0844 (17)−0.0124 (13)0.0249 (13)−0.0186 (13)
C40.0815 (16)0.094 (2)0.0604 (13)0.006 (2)0.0211 (12)−0.0157 (18)
C100.0608 (13)0.0537 (14)0.0536 (12)0.0046 (11)0.0156 (10)0.0015 (10)
C90.0560 (11)0.0377 (14)0.0538 (11)0.0022 (9)0.0132 (9)−0.0009 (9)
C140.0575 (12)0.0593 (16)0.0560 (12)0.0035 (11)0.0150 (10)0.0000 (10)
C80.0587 (12)0.0409 (13)0.0580 (12)0.0034 (10)0.0184 (10)0.0038 (9)
C50.0774 (17)0.078 (2)0.0697 (15)0.0113 (15)0.0353 (13)0.0131 (14)
C110.0643 (13)0.0643 (19)0.0554 (11)0.0034 (12)0.0170 (10)−0.0006 (11)
C70.0638 (14)0.0697 (18)0.0593 (13)−0.0104 (14)0.0145 (11)−0.0028 (12)
C60.0769 (17)0.0720 (19)0.0771 (16)−0.0169 (14)0.0270 (13)0.0031 (14)
C120.0772 (16)0.084 (2)0.0600 (14)0.0012 (15)0.0203 (12)−0.0009 (13)
C150.0746 (16)0.0795 (19)0.0805 (16)−0.0213 (16)0.0164 (13)−0.0149 (15)
C130.0885 (18)0.122 (3)0.0676 (15)0.0008 (18)0.0328 (14)−0.0044 (16)
O10.1012 (13)0.0340 (9)0.0831 (10)0.0008 (9)0.0366 (9)0.0008 (8)

Geometric parameters (Å, °)

S1—O11.4923 (18)C14—H14B0.9700
S1—C81.797 (2)C8—H8A0.9700
S1—C11.813 (2)C8—H8B0.9700
C1—C21.499 (3)C5—C61.360 (4)
C1—H1A0.9700C5—H50.9300
C1—H1B0.9700C11—C121.511 (3)
C2—C71.372 (3)C11—H11A0.9700
C2—C31.378 (3)C11—H11B0.9700
C3—C41.382 (4)C7—C61.382 (3)
C3—H30.9300C7—H70.9300
C4—C51.358 (4)C6—H60.9300
C4—H40.9300C12—C131.520 (3)
C10—C111.523 (3)C12—H12A0.9700
C10—C91.532 (3)C12—H12B0.9700
C10—H10A0.9700C15—H15A0.9600
C10—H10B0.9700C15—H15B0.9600
C9—C141.534 (3)C15—H15C0.9600
C9—C81.535 (3)C13—H13A0.9600
C9—H90.9800C13—H13B0.9600
C14—C151.507 (3)C13—H13C0.9600
C14—H14A0.9700
O1—S1—C8106.19 (10)S1—C8—H8A109.3
O1—S1—C1107.14 (11)C9—C8—H8B109.3
C8—S1—C196.52 (10)S1—C8—H8B109.3
C2—C1—S1110.21 (15)H8A—C8—H8B107.9
C2—C1—H1A109.6C4—C5—C6119.9 (2)
S1—C1—H1A109.6C4—C5—H5120.1
C2—C1—H1B109.6C6—C5—H5120.1
S1—C1—H1B109.6C12—C11—C10112.9 (2)
H1A—C1—H1B108.1C12—C11—H11A109.0
C7—C2—C3117.6 (2)C10—C11—H11A109.0
C7—C2—C1120.3 (2)C12—C11—H11B109.0
C3—C2—C1122.1 (2)C10—C11—H11B109.0
C2—C3—C4121.0 (2)H11A—C11—H11B107.8
C2—C3—H3119.5C2—C7—C6121.5 (2)
C4—C3—H3119.5C2—C7—H7119.3
C5—C4—C3120.3 (2)C6—C7—H7119.3
C5—C4—H4119.9C5—C6—C7119.8 (3)
C3—C4—H4119.9C5—C6—H6120.1
C11—C10—C9114.60 (18)C7—C6—H6120.1
C11—C10—H10A108.6C11—C12—C13113.4 (2)
C9—C10—H10A108.6C11—C12—H12A108.9
C11—C10—H10B108.6C13—C12—H12A108.9
C9—C10—H10B108.6C11—C12—H12B108.9
H10A—C10—H10B107.6C13—C12—H12B108.9
C10—C9—C14113.55 (17)H12A—C12—H12B107.7
C10—C9—C8108.82 (16)C14—C15—H15A109.5
C14—C9—C8112.70 (16)C14—C15—H15B109.5
C10—C9—H9107.1H15A—C15—H15B109.5
C14—C9—H9107.1C14—C15—H15C109.5
C8—C9—H9107.1H15A—C15—H15C109.5
C15—C14—C9115.7 (2)H15B—C15—H15C109.5
C15—C14—H14A108.3C12—C13—H13A109.5
C9—C14—H14A108.3C12—C13—H13B109.5
C15—C14—H14B108.3H13A—C13—H13B109.5
C9—C14—H14B108.3C12—C13—H13C109.5
H14A—C14—H14B107.4H13A—C13—H13C109.5
C9—C8—S1111.68 (15)H13B—C13—H13C109.5
C9—C8—H8A109.3
O1—S1—C1—C2−64.88 (19)C10—C9—C8—S1−172.63 (15)
C8—S1—C1—C2−174.08 (17)C14—C9—C8—S160.5 (2)
S1—C1—C2—C790.3 (2)O1—S1—C8—C963.90 (17)
S1—C1—C2—C3−87.7 (2)C1—S1—C8—C9173.90 (16)
C7—C2—C3—C4−0.1 (4)C3—C4—C5—C6−0.2 (4)
C1—C2—C3—C4177.9 (2)C9—C10—C11—C12−176.65 (19)
C2—C3—C4—C50.3 (4)C3—C2—C7—C6−0.1 (4)
C11—C10—C9—C14−60.3 (3)C1—C2—C7—C6−178.2 (2)
C11—C10—C9—C8173.35 (18)C4—C5—C6—C70.0 (4)
C10—C9—C14—C15−61.5 (2)C2—C7—C6—C50.2 (4)
C8—C9—C14—C1562.8 (2)C10—C11—C12—C13−179.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.972.393.258 (3)149
C1—H1B···O1i0.972.493.333 (3)145

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2215).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Iitaka, Y., Itai, A., Tomioka, N., Kodama, Y., Ichikawa, K., Nishihata, K., Nishio, M., Izumi, M. & Doi, K. (1986). Bull. Chem. Soc. Jpn, 59, 2801–2806.
  • Li, J. R., Du, M., Bu, X. H. & Zhang, R. H. (2003). J. Solid State Chem.173, 20–26.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Xu, Z. G., Gu, G. B., Liu, H. Y., Jiang, H. F. & Chang, C. K. (2006). Chin. J. Struct. Chem.25, 1524–1530.
  • Xu, Z. G., Yu, R. N., Gu, G. B. & Chen, Z. H. (2007). Precious Met.28, 6–9.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography