PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1474.
Published online 2009 October 31. doi:  10.1107/S1600536809044249
PMCID: PMC2971210

(μ-1,2-Di-4-pyridylethyl­ene-κ2 N:N′)bis­[bis­(N,N-dimethyl­dithio­carbamato-κ2 S,S′)zinc(II)]

Abstract

The dinuclear title compound, [Zn2(C3H6NS2)4(C12H10N2)], features two five-coordinate Zn atoms, one with an NS4 coordination geometry distorted towards a trigonal-bipyramidal arrangement, and the other distorted towards a square pyramid. In the crystal, mol­ecules are connected into supra­molecular zigzag chains via C—H(...)S contacts. Chains are connected via C—H(...)π interactions, consolidating the crystal packing.

Related literature

For background to supra­molecular polymers of zinc 1,1-dithiol­ates, see: Lai et al. (2002 [triangle]); Chen et al. (2006 [triangle]); Benson et al. (2007 [triangle]). For a related structure and the synthesis, see: Lai & Tiekink (2003 [triangle]). For additional geometrical analysis, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1474-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C3H6NS2)4(C12H10N2)]
  • M r = 793.79
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1474-efi1.jpg
  • a = 13.061 (4) Å
  • b = 15.904 (4) Å
  • c = 17.658 (5) Å
  • β = 108.443 (4)°
  • V = 3479.7 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.88 mm−1
  • T = 98 K
  • 0.40 × 0.08 × 0.06 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.645, T max = 1.000
  • 23158 measured reflections
  • 7142 independent reflections
  • 6509 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.155
  • S = 1.22
  • 7142 reflections
  • 369 parameters
  • H-atom parameters constrained
  • Δρmax = 1.51 e Å−3
  • Δρmin = −0.73 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044249/pv2225sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044249/pv2225Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Compared to their xanthates (-S2COR) and dithiophosphates [-S2P(OR)2], crystal engineering studies of zinc(II) dithiocarbamates (-S2CNR2) are less well developed (Lai et al., 2002; Chen et al., 2006; Benson et al. 2007). This is likely due to the stronger chelating ability of the dithiocarbamate ligand which tends to preclude incorporation of multiple bridging ligands within the Zn atom coordination sphere. This principle is exemplified in the title compound, (I), Fig. 1, where each Zn atom is five coordinate within a NS4 donor set. The dithiocarbamate ligands are chelating but form disparate Zn—S bond distances ranging from 2.3204 (15) to 2.6650 (16) Å. The coordination geometries for the Zn1 and Zn2 atoms are distorted towards trigonal bipyramidal (TP) and square pyramidal (SP), respectively. This is quantified by the values of τ = 0.58 and 0.39, respectively, compared with the ideal values of 0.0 and 1.0 for SP and TP, respectively (Addison et al., 1984).

The most closely related structure available for comparison is the diethyldithiocarbamate analogue of (I) which was co-crystallized with a trans-1,2-bis(4-pyridyl)ethylene molecule (Lai & Tiekink, 2003). Here, the range of Zn—S bond distances was considerably narrower, i.e. 2.4100 (10) to 2.4914 (11) Å, and the coordination geometry was close to SP (τ = 0.13).

Molecules of (I) are connected by C—H···S interactions, Table 1, to form supramolecular zigzag chains that pack in the ab plane, Table 1 and Fig. 2. Chains are connected via C—H···π interactions to consolidate the crystal packing, Table 1 and Fig. 3.

Experimental

Compound (I) was prepared by following a standard literature procedure (Lai & Tiekink, 2003). and recrystallized from the slow evaporation of a chloroform/acetonitrile (3:1) solution of (I); m. pt. 555–557 K.

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.51 and 0.73 e Å-3, respectively, were located 1.81 Å and 1.17 Å from the S5 and Zn2 atoms, respectively.

Figures

Fig. 1.
Molecular structure of (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 70% probability level.
Fig. 2.
Supramolecular chain in (I) mediated by C—H···S interactions (orange dashed lines).
Fig. 3.
Unit-cell contents for (I) viewed in projection down the b axis.

Crystal data

[Zn2(C3H6NS2)4(C12H10N2)]F(000) = 1632
Mr = 793.79Dx = 1.515 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 17793 reflections
a = 13.061 (4) Åθ = 2.1–40.7°
b = 15.904 (4) ŵ = 1.88 mm1
c = 17.658 (5) ÅT = 98 K
β = 108.443 (4)°Prism, pale-yellow
V = 3479.7 (16) Å30.40 × 0.08 × 0.06 mm
Z = 4

Data collection

Rigaku AFC12K/SATURN724 diffractometer7142 independent reflections
Radiation source: fine-focus sealed tube6509 reflections with I > 2σ(I)
graphiteRint = 0.048
ω scansθmax = 26.5°, θmin = 2.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −14→16
Tmin = 0.645, Tmax = 1k = −19→19
23158 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.22w = 1/[σ2(Fo2) + (0.0348P)2 + 22.73P] where P = (Fo2 + 2Fc2)/3
7142 reflections(Δ/σ)max = 0.001
369 parametersΔρmax = 1.51 e Å3
0 restraintsΔρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn11.20505 (5)−0.06078 (4)0.25194 (4)0.01739 (16)
Zn20.28728 (5)0.32085 (4)0.25404 (3)0.01633 (15)
S11.36946 (11)−0.05320 (9)0.35297 (8)0.0220 (3)
S21.19681 (11)−0.16805 (9)0.36581 (8)0.0231 (3)
S31.13226 (12)−0.14634 (9)0.13829 (8)0.0249 (3)
S41.23185 (12)0.02060 (10)0.13722 (9)0.0270 (3)
S50.12699 (11)0.30053 (9)0.14792 (8)0.0217 (3)
S60.29923 (11)0.41474 (9)0.13505 (8)0.0219 (3)
S70.36844 (12)0.41455 (8)0.36276 (8)0.0212 (3)
S80.24259 (12)0.26126 (9)0.37027 (8)0.0235 (3)
N11.3939 (4)−0.1618 (3)0.4724 (3)0.0263 (11)
N21.1227 (4)−0.0632 (4)0.0052 (3)0.0313 (12)
N31.0784 (3)0.0114 (3)0.2611 (2)0.0162 (9)
N40.4200 (3)0.2477 (3)0.2579 (3)0.0166 (9)
N50.1104 (4)0.3966 (3)0.0203 (3)0.0297 (11)
N60.3653 (4)0.3445 (3)0.4985 (3)0.0268 (11)
C11.3264 (5)−0.1315 (3)0.4054 (3)0.0215 (11)
C21.3594 (6)−0.2265 (5)0.5182 (4)0.0422 (17)
H2A1.3048−0.20310.53950.063*
H2B1.4217−0.24560.56230.063*
H2C1.3287−0.27430.48320.063*
C31.5023 (5)−0.1256 (5)0.5090 (4)0.0394 (16)
H3A1.5345−0.11250.46720.059*
H3B1.5480−0.16630.54640.059*
H3C1.4966−0.07400.53770.059*
C41.1581 (5)−0.0622 (4)0.0845 (3)0.0237 (12)
C51.0612 (7)−0.1339 (5)−0.0405 (4)0.0448 (18)
H5A1.1110−0.1749−0.05110.067*
H5B1.0118−0.1132−0.09120.067*
H5C1.0196−0.1608−0.00970.067*
C61.1407 (6)0.0060 (5)−0.0437 (4)0.0405 (17)
H6A1.16870.0549−0.00960.061*
H6B1.07230.0209−0.08420.061*
H6C1.1930−0.0113−0.07000.061*
C70.9896 (4)−0.0291 (3)0.2653 (3)0.0205 (11)
H70.9906−0.08880.26790.025*
C80.8978 (4)0.0128 (3)0.2659 (3)0.0195 (11)
H80.8369−0.01810.26890.023*
C90.8936 (4)0.1001 (3)0.2622 (3)0.0155 (10)
C100.9858 (4)0.1419 (3)0.2589 (3)0.0187 (10)
H100.98730.20150.25760.022*
C111.0749 (4)0.0960 (3)0.2577 (3)0.0172 (10)
H111.13660.12550.25440.021*
C120.7970 (4)0.1474 (3)0.2610 (3)0.0171 (10)
H120.80010.20700.25810.020*
C130.7048 (4)0.1132 (3)0.2637 (3)0.0203 (11)
H130.70210.05360.26720.024*
C140.6081 (4)0.1601 (3)0.2616 (3)0.0188 (11)
C150.5180 (4)0.1187 (3)0.2703 (3)0.0206 (11)
H150.51950.05950.27770.025*
C160.4266 (4)0.1642 (3)0.2681 (3)0.0200 (11)
H160.36610.13500.27410.024*
C170.5068 (4)0.2883 (3)0.2503 (4)0.0221 (11)
H170.50320.34770.24370.027*
C180.6004 (4)0.2477 (3)0.2516 (3)0.0202 (11)
H180.65950.27880.24570.024*
C190.3290 (4)0.3405 (3)0.4199 (3)0.0202 (11)
C200.3321 (7)0.2847 (4)0.5497 (4)0.0415 (18)
H20A0.27950.24510.51630.062*
H20B0.29930.31540.58430.062*
H20C0.39540.25370.58270.062*
C210.4428 (6)0.4077 (4)0.5421 (4)0.0378 (16)
H21A0.47860.43280.50640.057*
H21B0.49690.38110.58740.057*
H21C0.40490.45160.56170.057*
C220.1729 (4)0.3733 (3)0.0934 (3)0.0198 (11)
C230.0051 (6)0.3582 (5)−0.0177 (4)0.0414 (17)
H23A0.01440.3056−0.04380.062*
H23B−0.04010.3969−0.05770.062*
H23C−0.02980.34630.02280.062*
C240.1514 (6)0.4526 (5)−0.0292 (4)0.0407 (17)
H24A0.19890.49480.00470.061*
H24B0.09070.4807−0.06850.061*
H24C0.19200.4197−0.05710.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0141 (3)0.0210 (3)0.0169 (3)0.0026 (2)0.0046 (2)−0.0017 (2)
Zn20.0149 (3)0.0178 (3)0.0163 (3)0.0025 (2)0.0051 (2)−0.0006 (2)
S10.0173 (6)0.0239 (7)0.0221 (7)−0.0011 (5)0.0025 (5)−0.0001 (5)
S20.0225 (7)0.0234 (7)0.0220 (7)−0.0002 (5)0.0050 (5)0.0024 (5)
S30.0322 (8)0.0199 (7)0.0203 (7)0.0009 (6)0.0049 (6)−0.0016 (5)
S40.0298 (8)0.0309 (8)0.0222 (7)−0.0065 (6)0.0110 (6)−0.0001 (6)
S50.0188 (7)0.0251 (7)0.0195 (7)0.0007 (5)0.0038 (5)−0.0004 (5)
S60.0241 (7)0.0219 (7)0.0198 (7)0.0013 (5)0.0071 (5)−0.0004 (5)
S70.0290 (7)0.0187 (6)0.0175 (6)−0.0041 (5)0.0097 (5)0.0004 (5)
S80.0244 (7)0.0258 (7)0.0224 (7)−0.0087 (6)0.0102 (6)−0.0022 (5)
N10.025 (3)0.027 (3)0.022 (2)−0.001 (2)0.000 (2)0.000 (2)
N20.034 (3)0.038 (3)0.019 (2)0.007 (2)0.005 (2)0.002 (2)
N30.013 (2)0.019 (2)0.015 (2)0.0025 (17)0.0028 (16)0.0002 (17)
N40.017 (2)0.014 (2)0.019 (2)0.0017 (17)0.0058 (17)0.0012 (17)
N50.032 (3)0.034 (3)0.019 (2)−0.001 (2)0.002 (2)0.002 (2)
N60.039 (3)0.027 (3)0.014 (2)−0.012 (2)0.008 (2)0.0019 (19)
C10.026 (3)0.021 (3)0.017 (3)0.002 (2)0.006 (2)−0.001 (2)
C20.047 (4)0.045 (4)0.025 (3)−0.005 (3)−0.001 (3)0.012 (3)
C30.029 (3)0.047 (4)0.031 (3)−0.008 (3)−0.008 (3)0.004 (3)
C40.022 (3)0.031 (3)0.017 (3)0.006 (2)0.006 (2)0.001 (2)
C50.060 (5)0.046 (4)0.021 (3)0.000 (4)0.003 (3)−0.007 (3)
C60.043 (4)0.056 (5)0.022 (3)0.000 (3)0.010 (3)0.008 (3)
C70.019 (3)0.018 (3)0.027 (3)0.004 (2)0.011 (2)0.003 (2)
C80.018 (3)0.015 (2)0.026 (3)−0.002 (2)0.008 (2)0.001 (2)
C90.019 (3)0.014 (2)0.013 (2)−0.0002 (19)0.0041 (19)−0.0012 (18)
C100.019 (3)0.013 (2)0.025 (3)0.001 (2)0.007 (2)0.002 (2)
C110.014 (2)0.014 (2)0.023 (3)−0.0008 (19)0.006 (2)0.000 (2)
C120.017 (3)0.014 (2)0.021 (3)−0.0019 (19)0.006 (2)−0.0005 (19)
C130.020 (3)0.014 (2)0.027 (3)0.000 (2)0.008 (2)0.006 (2)
C140.017 (3)0.018 (3)0.020 (3)0.000 (2)0.004 (2)0.002 (2)
C150.021 (3)0.017 (3)0.025 (3)−0.002 (2)0.009 (2)0.005 (2)
C160.022 (3)0.017 (3)0.022 (3)−0.003 (2)0.009 (2)0.001 (2)
C170.018 (3)0.013 (2)0.036 (3)−0.002 (2)0.010 (2)0.000 (2)
C180.020 (3)0.014 (2)0.028 (3)−0.003 (2)0.010 (2)0.002 (2)
C190.021 (3)0.020 (3)0.022 (3)0.001 (2)0.009 (2)0.001 (2)
C200.072 (5)0.031 (3)0.026 (3)−0.019 (3)0.022 (3)0.005 (3)
C210.052 (4)0.040 (4)0.020 (3)−0.018 (3)0.010 (3)−0.005 (3)
C220.021 (3)0.021 (3)0.016 (3)0.005 (2)0.004 (2)−0.002 (2)
C230.037 (4)0.053 (4)0.022 (3)−0.002 (3)−0.007 (3)0.008 (3)
C240.048 (4)0.045 (4)0.025 (3)−0.001 (3)0.005 (3)0.011 (3)

Geometric parameters (Å, °)

Zn1—N32.061 (4)C5—H5A0.9800
Zn1—S12.3204 (15)C5—H5B0.9800
Zn1—S32.3613 (16)C5—H5C0.9800
Zn1—S42.5200 (16)C6—H6A0.9800
Zn1—S22.6650 (16)C6—H6B0.9800
Zn2—N42.071 (4)C6—H6C0.9800
Zn2—S52.3488 (15)C7—C81.376 (7)
Zn2—S72.3964 (15)C7—H70.9500
Zn2—S82.4918 (16)C8—C91.391 (7)
Zn2—S62.6223 (16)C8—H80.9500
S1—C11.746 (6)C9—C101.391 (7)
S2—C11.716 (6)C9—C121.463 (7)
S3—C41.736 (6)C10—C111.380 (7)
S4—C41.721 (6)C10—H100.9500
S5—C221.730 (6)C11—H110.9500
S6—C221.711 (6)C12—C131.336 (7)
S7—C191.732 (6)C12—H120.9500
S8—C191.733 (6)C13—C141.458 (7)
N1—C11.323 (7)C13—H130.9500
N1—C21.466 (8)C14—C151.399 (7)
N1—C31.475 (8)C14—C181.403 (7)
N2—C41.328 (7)C15—C161.387 (8)
N2—C61.463 (9)C15—H150.9500
N2—C51.466 (9)C16—H160.9500
N3—C111.348 (7)C17—C181.377 (8)
N3—C71.348 (7)C17—H170.9500
N4—C161.339 (7)C18—H180.9500
N4—C171.349 (7)C20—H20A0.9800
N5—C221.343 (7)C20—H20B0.9800
N5—C231.460 (8)C20—H20C0.9800
N5—C241.463 (8)C21—H21A0.9800
N6—C191.319 (7)C21—H21B0.9800
N6—C211.460 (8)C21—H21C0.9800
N6—C201.470 (7)C23—H23A0.9800
C2—H2A0.9800C23—H23B0.9800
C2—H2B0.9800C23—H23C0.9800
C2—H2C0.9800C24—H24A0.9800
C3—H3A0.9800C24—H24B0.9800
C3—H3B0.9800C24—H24C0.9800
C3—H3C0.9800
N3—Zn1—S1118.77 (13)N2—C6—H6B109.5
N3—Zn1—S3105.66 (13)H6A—C6—H6B109.5
S1—Zn1—S3135.17 (6)N2—C6—H6C109.5
N3—Zn1—S495.51 (13)H6A—C6—H6C109.5
S1—Zn1—S4105.14 (6)H6B—C6—H6C109.5
S3—Zn1—S474.56 (6)N3—C7—C8122.5 (5)
N3—Zn1—S294.15 (13)N3—C7—H7118.8
S1—Zn1—S272.64 (5)C8—C7—H7118.8
S3—Zn1—S299.84 (6)C7—C8—C9120.3 (5)
S4—Zn1—S2169.86 (5)C7—C8—H8119.9
N4—Zn2—S5118.30 (13)C9—C8—H8119.9
N4—Zn2—S799.78 (13)C8—C9—C10117.2 (5)
S5—Zn2—S7141.40 (6)C8—C9—C12122.3 (5)
N4—Zn2—S899.85 (13)C10—C9—C12120.5 (5)
S5—Zn2—S8102.88 (6)C11—C10—C9119.6 (5)
S7—Zn2—S874.71 (5)C11—C10—H10120.2
N4—Zn2—S694.87 (12)C9—C10—H10120.2
S5—Zn2—S672.73 (5)N3—C11—C10123.0 (5)
S7—Zn2—S699.46 (5)N3—C11—H11118.5
S8—Zn2—S6164.88 (5)C10—C11—H11118.5
C1—S1—Zn189.75 (19)C13—C12—C9124.9 (5)
C1—S2—Zn179.62 (19)C13—C12—H12117.5
C4—S3—Zn185.7 (2)C9—C12—H12117.5
C4—S4—Zn181.14 (19)C12—C13—C14125.0 (5)
C22—S5—Zn288.47 (19)C12—C13—H13117.5
C22—S6—Zn280.31 (19)C14—C13—H13117.5
C19—S7—Zn284.58 (19)C15—C14—C18116.9 (5)
C19—S8—Zn281.66 (18)C15—C14—C13120.5 (5)
C1—N1—C2121.0 (5)C18—C14—C13122.6 (5)
C1—N1—C3121.7 (5)C16—C15—C14119.8 (5)
C2—N1—C3116.9 (5)C16—C15—H15120.1
C4—N2—C6123.0 (6)C14—C15—H15120.1
C4—N2—C5122.4 (6)N4—C16—C15122.7 (5)
C6—N2—C5114.5 (5)N4—C16—H16118.7
C11—N3—C7117.5 (5)C15—C16—H16118.7
C11—N3—Zn1124.7 (4)N4—C17—C18122.9 (5)
C7—N3—Zn1117.7 (4)N4—C17—H17118.6
C16—N4—C17118.0 (5)C18—C17—H17118.6
C16—N4—Zn2125.4 (4)C17—C18—C14119.8 (5)
C17—N4—Zn2116.6 (4)C17—C18—H18120.1
C22—N5—C23121.7 (5)C14—C18—H18120.1
C22—N5—C24121.0 (5)N6—C19—S7120.3 (4)
C23—N5—C24116.7 (5)N6—C19—S8121.9 (4)
C19—N6—C21123.2 (5)S7—C19—S8117.8 (3)
C19—N6—C20122.5 (5)N6—C20—H20A109.5
C21—N6—C20114.3 (5)N6—C20—H20B109.5
N1—C1—S2122.2 (4)H20A—C20—H20B109.5
N1—C1—S1119.9 (4)N6—C20—H20C109.5
S2—C1—S1117.9 (3)H20A—C20—H20C109.5
N1—C2—H2A109.5H20B—C20—H20C109.5
N1—C2—H2B109.5N6—C21—H21A109.5
H2A—C2—H2B109.5N6—C21—H21B109.5
N1—C2—H2C109.5H21A—C21—H21B109.5
H2A—C2—H2C109.5N6—C21—H21C109.5
H2B—C2—H2C109.5H21A—C21—H21C109.5
N1—C3—H3A109.5H21B—C21—H21C109.5
N1—C3—H3B109.5N5—C22—S6121.2 (4)
H3A—C3—H3B109.5N5—C22—S5120.4 (4)
N1—C3—H3C109.5S6—C22—S5118.4 (3)
H3A—C3—H3C109.5N5—C23—H23A109.5
H3B—C3—H3C109.5N5—C23—H23B109.5
N2—C4—S4121.9 (5)H23A—C23—H23B109.5
N2—C4—S3120.3 (5)N5—C23—H23C109.5
S4—C4—S3117.8 (3)H23A—C23—H23C109.5
N2—C5—H5A109.5H23B—C23—H23C109.5
N2—C5—H5B109.5N5—C24—H24A109.5
H5A—C5—H5B109.5N5—C24—H24B109.5
N2—C5—H5C109.5H24A—C24—H24B109.5
H5A—C5—H5C109.5N5—C24—H24C109.5
H5B—C5—H5C109.5H24A—C24—H24C109.5
N2—C6—H6A109.5H24B—C24—H24C109.5
N3—Zn1—S1—C187.2 (2)Zn1—S2—C1—S13.1 (3)
S3—Zn1—S1—C1−84.5 (2)Zn1—S1—C1—N1175.1 (5)
S4—Zn1—S1—C1−167.63 (19)Zn1—S1—C1—S2−3.5 (3)
S2—Zn1—S1—C12.06 (18)C6—N2—C4—S4−1.6 (9)
N3—Zn1—S2—C1−121.0 (2)C5—N2—C4—S4179.1 (5)
S1—Zn1—S2—C1−2.13 (19)C6—N2—C4—S3179.3 (5)
S3—Zn1—S2—C1132.29 (19)C5—N2—C4—S3−0.1 (9)
S4—Zn1—S2—C176.7 (4)Zn1—S4—C4—N2172.6 (5)
N3—Zn1—S3—C486.0 (2)Zn1—S4—C4—S3−8.2 (3)
S1—Zn1—S3—C4−101.6 (2)Zn1—S3—C4—N2−172.1 (5)
S4—Zn1—S3—C4−5.44 (19)Zn1—S3—C4—S48.7 (3)
S2—Zn1—S3—C4−176.78 (19)C11—N3—C7—C80.2 (8)
N3—Zn1—S4—C4−99.2 (2)Zn1—N3—C7—C8−175.4 (4)
S1—Zn1—S4—C4139.0 (2)N3—C7—C8—C90.0 (8)
S3—Zn1—S4—C45.5 (2)C7—C8—C9—C10−0.8 (8)
S2—Zn1—S4—C463.0 (4)C7—C8—C9—C12178.7 (5)
N4—Zn2—S5—C22−88.2 (2)C8—C9—C10—C111.4 (8)
S7—Zn2—S5—C2281.4 (2)C12—C9—C10—C11−178.1 (5)
S8—Zn2—S5—C22162.95 (18)C7—N3—C11—C100.4 (8)
S6—Zn2—S5—C22−2.06 (18)Zn1—N3—C11—C10175.7 (4)
N4—Zn2—S6—C22120.3 (2)C9—C10—C11—N3−1.3 (8)
S5—Zn2—S6—C222.11 (18)C8—C9—C12—C130.4 (8)
S7—Zn2—S6—C22−138.96 (18)C10—C9—C12—C13179.8 (5)
S8—Zn2—S6—C22−73.1 (3)C9—C12—C13—C14−179.3 (5)
N4—Zn2—S7—C19−90.9 (2)C12—C13—C14—C15−175.5 (5)
S5—Zn2—S7—C1998.4 (2)C12—C13—C14—C184.0 (9)
S8—Zn2—S7—C196.76 (19)C18—C14—C15—C160.6 (8)
S6—Zn2—S7—C19172.47 (19)C13—C14—C15—C16−179.9 (5)
N4—Zn2—S8—C1990.7 (2)C17—N4—C16—C15−0.7 (8)
S5—Zn2—S8—C19−147.03 (19)Zn2—N4—C16—C15−179.8 (4)
S7—Zn2—S8—C19−6.80 (19)C14—C15—C16—N40.0 (8)
S6—Zn2—S8—C19−75.8 (3)C16—N4—C17—C180.9 (8)
S1—Zn1—N3—C1166.9 (4)Zn2—N4—C17—C18−179.9 (4)
S3—Zn1—N3—C11−119.2 (4)N4—C17—C18—C14−0.4 (9)
S4—Zn1—N3—C11−43.7 (4)C15—C14—C18—C17−0.4 (8)
S2—Zn1—N3—C11139.4 (4)C13—C14—C18—C17−179.9 (5)
S1—Zn1—N3—C7−117.8 (4)C21—N6—C19—S7−2.6 (9)
S3—Zn1—N3—C756.1 (4)C20—N6—C19—S7178.3 (5)
S4—Zn1—N3—C7131.6 (4)C21—N6—C19—S8176.5 (5)
S2—Zn1—N3—C7−45.3 (4)C20—N6—C19—S8−2.6 (9)
S5—Zn2—N4—C16−65.3 (5)Zn2—S7—C19—N6168.5 (5)
S7—Zn2—N4—C16121.2 (4)Zn2—S7—C19—S8−10.6 (3)
S8—Zn2—N4—C1645.2 (4)Zn2—S8—C19—N6−168.9 (5)
S6—Zn2—N4—C16−138.3 (4)Zn2—S8—C19—S710.3 (3)
S5—Zn2—N4—C17115.6 (4)C23—N5—C22—S6176.4 (5)
S7—Zn2—N4—C17−57.9 (4)C24—N5—C22—S65.4 (8)
S8—Zn2—N4—C17−133.9 (4)C23—N5—C22—S5−3.7 (8)
S6—Zn2—N4—C1742.6 (4)C24—N5—C22—S5−174.8 (5)
C2—N1—C1—S2−2.5 (8)Zn2—S6—C22—N5176.8 (5)
C3—N1—C1—S2−175.3 (5)Zn2—S6—C22—S5−3.1 (3)
C2—N1—C1—S1179.0 (5)Zn2—S5—C22—N5−176.4 (5)
C3—N1—C1—S16.2 (8)Zn2—S5—C22—S63.4 (3)
Zn1—S2—C1—N1−175.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13···S6i0.952.813.636 (5)146
C18—H18···Cg1ii0.952.763.589 (5)146
C24—H24b···Cg2iii0.982.933.638 (7)130

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+2, y+1/2, −z+1/2; (iii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2225).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Benson, R. E., Ellis, C. A., Lewis, C. E. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 930–940.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Lai, C. S., Lim, Y. X., Yap, T. C. & Tiekink, E. R. T. (2002). CrystEngComm, 4, 596–600.
  • Lai, C. S. & Tiekink, E. R. T. (2003). Appl. Organomet. Chem.17, 251–252.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography