PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2939–o2940.
Published online 2009 October 31. doi:  10.1107/S1600536809044663
PMCID: PMC2971208

Bis(2,6-diamino­pyridinium) tartrate monohydrate

Abstract

In the title compound, 2C5H8N3 +·C4H4O6 2−·H2O, the two cations are essentially planar [maximum deviations = 0.023 (1) and 0.026 (1) Å]. In one of the cations, the protonated N atom and one of the amino group H atoms are hydrogen bonded to one of the carboxyl groups of the dianion through a pair of N—H(...)O hydrogen bonds, forming an R 2 2(8) ring motif. In the crystal structure, the tartrate anions and water mol­ecules are linked into chains along the c axis by inter­molecular O—H(...)O and C—H(...)O hydrogen bonds. The cations further link the anions and water mol­ecules into a three-dimensional extended structure by a network of N—H(...)O hydrogen bonds. The crystal structure is also stabilized by weak inter­molecular π–π inter­actions [centroid–centroid distance = 3.6950 (6) Å].

Related literature

For related structures, see: Al-Dajani, Abdallah et al. (2009 [triangle]); Al-Dajani, Salhin et al. (2009 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2939-scheme1.jpg

Experimental

Crystal data

  • 2C5H8N3 +·C4H4O6 2−·H2O
  • M r = 386.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2939-efi1.jpg
  • a = 14.4722 (2) Å
  • b = 15.7270 (2) Å
  • c = 7.8419 (1) Å
  • β = 96.916 (1)°
  • V = 1771.86 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 K
  • 0.44 × 0.33 × 0.26 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.950, T max = 0.970
  • 55803 measured reflections
  • 8384 independent reflections
  • 5761 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.137
  • S = 1.04
  • 8384 reflections
  • 332 parameters
  • All H-atom parameters refined
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044663/hb5185sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044663/hb5185Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Universiti Sains Malaysia (USM) under grant No. 1001/PFARMASI/815025. HKF and JHG thank USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. JHG also thanks USM for the award of a USM fellowship.

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, (I) (Fig. 1), comprises of two 2,6-diaminopyridinium cations, a tartrate dianion and a water molecule. Two intermolecular protons transfer from the carboxylic groups of tartaric acid to atoms N1 & N4 of the 2,6-diaminopyridine moiety has resulted in the formation of ions. The protonated N1 atom and the N2 atom of the amino group are hydrogen bonded to the carboxyl group (atoms O5 & O6) via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Fig. 1, Bernstein et al., 1995). The two 2,6-diaminopyridinium cations (N1–N3/C5–C9) and (N4–N6/C10–C14) are essentially planar, with maximum devations of 0.023 (1) and 0.026 (1) Å, respectively, for atoms C6 and C11. Comparing with the unprotonated structure (De cires-Mejias et al., 2004), protonation of atoms N1 & N4 have widened the C—N—C angles to 123.51 (8) and 123.92 (9)°, respectively, for angles of C5—N1—C9 and C10—N4—C14. The bond lengths (Allen et al., 1987) and angles observed are within normal ranges and are consistent with those related structures (Al-Dajani, Abdallah et al., 2009; Al-Dajani, Salhin et al., 2009).

The crystal structure of (I) is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. Each N atom in the cations participates in intermolecular hydrogen bonds. In the crystal structure (Fig. 2), the tartrate anions and water molecules are linked into chains along the c axis by intermolecular O1—H1O1···O4, O2—H1O2···O4, O1W—H1W1···O3, O1W—H1W1···O4, O1W—H2W1···O5 and C2—H2A···O3 hydrogen bonds (Table 1). The 2,6-diaminopyridinium cations further linked the anions and water molecules into a three-dimensional extended structure by a network of N—H···O hydrogen bonds (Table 1). The crystal structure is further stabilized by weak intermolecular π–π interactions [Cg1···Cg1 = 3.6950 (6) Å; Cg1 is the centroid of the N1/C5–C9 pyridine ring].

Experimental

Tartaric acid (0.01 mol, 1.5 g) was dissolved in 50 ml of methanol in a round bottom flask. 2,6-Diaminopyridine (0.02 mol, 2.2 g) was added in small portions to the flask with stirring. The reaction mixture was left stirring for 3 h at room temperature. Brown blocks of (I) were separated, washed with methanol and dried at 353 K.

Refinement

All the hydrogen atoms were located from difference Fourier maps and allowed to refine freely [ranges: C—H = 0.922 (18) – 0.984 (15) Å; N—H = 0.827 (18) – 0.933 (14) Å]. The highest residual electron density peak is located at 0.77 Å from atom C2 and the deepest hole is located at 1.17 Å from atom C14.

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. Intermolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal structure of (I), viewed along the c axis, showing the three-dimensional network. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

2C5H8N3+·C4H4O62·H2OF(000) = 816
Mr = 386.38Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9979 reflections
a = 14.4722 (2) Åθ = 2.6–33.1°
b = 15.7270 (2) ŵ = 0.12 mm1
c = 7.8419 (1) ÅT = 296 K
β = 96.916 (1)°Block, brown
V = 1771.86 (4) Å30.44 × 0.33 × 0.26 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer8384 independent reflections
Radiation source: fine-focus sealed tube5761 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 36.1°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −23→23
Tmin = 0.950, Tmax = 0.970k = −25→24
55803 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137All H-atom parameters refined
S = 1.04w = 1/[σ2(Fo2) + (0.0645P)2 + 0.1774P] where P = (Fo2 + 2Fc2)/3
8384 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.14121 (5)0.62179 (5)0.37307 (9)0.03748 (15)
O20.33130 (5)0.69021 (5)0.36761 (10)0.03834 (16)
O30.09223 (6)0.78743 (6)0.35992 (11)0.0505 (2)
O40.19983 (6)0.82535 (5)0.57216 (9)0.04158 (17)
O50.28815 (5)0.55133 (5)0.71274 (9)0.04001 (16)
O60.36515 (6)0.53101 (5)0.48798 (9)0.04409 (18)
C10.15720 (6)0.77090 (6)0.47338 (11)0.03144 (17)
C20.18625 (6)0.67770 (6)0.49999 (10)0.02824 (15)
C30.29147 (6)0.66622 (6)0.51725 (10)0.02834 (15)
C40.31696 (6)0.57521 (6)0.57453 (10)0.02985 (16)
N10.39658 (5)0.44405 (5)0.90954 (9)0.02900 (14)
N20.47289 (7)0.39813 (7)0.68421 (11)0.0423 (2)
N30.31436 (7)0.50158 (7)1.11702 (12)0.0429 (2)
C50.46341 (6)0.39419 (6)0.85246 (11)0.03136 (17)
C60.51647 (7)0.34231 (7)0.97048 (14)0.0404 (2)
C70.49815 (8)0.34277 (7)1.13904 (14)0.0427 (2)
C80.43089 (8)0.39418 (7)1.19503 (12)0.0395 (2)
C90.38033 (6)0.44752 (6)1.07627 (10)0.03057 (16)
N40.07411 (6)0.29439 (6)0.34459 (12)0.03809 (18)
N50.05279 (8)0.15005 (7)0.31936 (18)0.0562 (3)
N60.07972 (10)0.44052 (8)0.3524 (2)0.0649 (3)
C100.10707 (7)0.21441 (7)0.37940 (14)0.0394 (2)
C110.19414 (8)0.20559 (8)0.47490 (18)0.0504 (3)
C120.24392 (8)0.27782 (10)0.52373 (19)0.0564 (3)
C130.20988 (9)0.35831 (9)0.48473 (18)0.0534 (3)
C140.12190 (8)0.36637 (7)0.39441 (15)0.0426 (2)
O1W0.11303 (7)0.52769 (6)0.82780 (15)0.0559 (2)
H1O10.1548 (11)0.6424 (10)0.272 (2)0.057 (4)*
H1O20.2904 (13)0.6826 (10)0.278 (2)0.067 (5)*
H1N10.3619 (9)0.4801 (8)0.8319 (18)0.044 (3)*
H1N20.5253 (12)0.3800 (10)0.650 (2)0.062 (4)*
H2N20.4425 (9)0.4390 (9)0.6238 (18)0.045 (3)*
H1N30.2911 (11)0.5406 (11)1.038 (2)0.065 (5)*
H2N30.3161 (12)0.5144 (10)1.224 (2)0.067 (5)*
H1N40.0176 (12)0.2971 (10)0.276 (2)0.059 (4)*
H1N50.0716 (12)0.1009 (12)0.338 (2)0.068 (5)*
H2N5−0.0001 (12)0.1605 (10)0.253 (2)0.059 (4)*
H1N60.0204 (12)0.4416 (10)0.302 (2)0.060 (4)*
H2N60.1102 (14)0.4860 (12)0.389 (3)0.079 (5)*
H2A0.1657 (8)0.6614 (7)0.6076 (14)0.030 (3)*
H3A0.3165 (9)0.7015 (7)0.6120 (16)0.034 (3)*
H6A0.5634 (12)0.3070 (10)0.937 (2)0.063 (4)*
H7A0.5370 (10)0.3053 (9)1.2187 (18)0.050 (4)*
H8A0.4196 (10)0.3943 (9)1.3120 (19)0.051 (4)*
H11A0.2168 (12)0.1515 (11)0.498 (2)0.067 (5)*
H12A0.3045 (13)0.2700 (11)0.588 (2)0.075 (5)*
H13A0.2436 (12)0.4097 (11)0.514 (2)0.069 (5)*
H1W10.1128 (16)0.5645 (16)0.907 (3)0.102 (7)*
H2W10.1669 (15)0.5349 (13)0.785 (3)0.087 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0370 (3)0.0357 (4)0.0381 (3)−0.0092 (3)−0.0024 (3)−0.0016 (3)
O20.0333 (3)0.0438 (4)0.0384 (3)−0.0046 (3)0.0061 (3)0.0108 (3)
O30.0395 (4)0.0544 (5)0.0547 (5)0.0125 (3)−0.0065 (3)0.0098 (4)
O40.0576 (4)0.0305 (3)0.0367 (3)0.0000 (3)0.0057 (3)−0.0021 (3)
O50.0451 (4)0.0428 (4)0.0335 (3)0.0128 (3)0.0100 (3)0.0117 (3)
O60.0569 (4)0.0413 (4)0.0360 (3)0.0153 (3)0.0133 (3)0.0013 (3)
C10.0326 (4)0.0333 (4)0.0292 (3)0.0048 (3)0.0066 (3)0.0038 (3)
C20.0298 (4)0.0285 (4)0.0261 (3)−0.0009 (3)0.0020 (3)0.0011 (3)
C30.0292 (4)0.0281 (4)0.0269 (3)−0.0014 (3)−0.0002 (3)0.0004 (3)
C40.0315 (4)0.0315 (4)0.0257 (3)0.0023 (3)−0.0001 (3)0.0008 (3)
N10.0305 (3)0.0292 (4)0.0266 (3)0.0036 (3)0.0006 (2)0.0020 (2)
N20.0456 (5)0.0480 (5)0.0346 (4)0.0104 (4)0.0100 (3)0.0000 (4)
N30.0471 (5)0.0488 (5)0.0331 (4)0.0141 (4)0.0064 (3)−0.0019 (4)
C50.0311 (4)0.0300 (4)0.0325 (4)0.0013 (3)0.0018 (3)−0.0028 (3)
C60.0396 (5)0.0367 (5)0.0431 (5)0.0124 (4)−0.0028 (4)−0.0020 (4)
C70.0485 (5)0.0359 (5)0.0398 (5)0.0078 (4)−0.0106 (4)0.0039 (4)
C80.0483 (5)0.0411 (5)0.0274 (4)0.0037 (4)−0.0022 (3)0.0033 (3)
C90.0322 (4)0.0317 (4)0.0270 (3)−0.0004 (3)0.0004 (3)−0.0007 (3)
N40.0290 (4)0.0349 (4)0.0485 (4)0.0013 (3)−0.0029 (3)−0.0015 (3)
N50.0403 (5)0.0351 (5)0.0901 (9)0.0016 (4)−0.0046 (5)−0.0084 (5)
N60.0575 (7)0.0332 (5)0.0982 (10)−0.0015 (5)−0.0145 (6)0.0028 (5)
C100.0319 (4)0.0352 (5)0.0508 (5)0.0024 (4)0.0031 (4)−0.0024 (4)
C110.0376 (5)0.0459 (7)0.0651 (7)0.0093 (5)−0.0048 (5)0.0021 (5)
C120.0339 (5)0.0639 (8)0.0670 (8)0.0027 (5)−0.0123 (5)−0.0004 (6)
C130.0413 (6)0.0490 (7)0.0661 (8)−0.0081 (5)−0.0095 (5)−0.0043 (5)
C140.0388 (5)0.0365 (5)0.0512 (6)−0.0026 (4)−0.0003 (4)−0.0007 (4)
O1W0.0539 (5)0.0414 (5)0.0734 (6)−0.0122 (4)0.0114 (4)−0.0059 (4)

Geometric parameters (Å, °)

O1—C21.4257 (11)C6—H6A0.938 (17)
O1—H1O10.901 (16)C7—C81.3773 (16)
O2—C31.4194 (10)C7—H7A0.984 (15)
O2—H1O20.868 (19)C8—C91.3937 (13)
O3—C11.2418 (12)C8—H8A0.951 (14)
O4—C11.2644 (12)N4—C141.3591 (14)
O5—C41.2643 (10)N4—C101.3613 (13)
O6—C41.2426 (11)N4—H1N40.923 (17)
C1—C21.5322 (13)N5—C101.3319 (15)
C2—C31.5231 (12)N5—H1N50.827 (18)
C2—H2A0.962 (11)N5—H2N50.888 (17)
C3—C41.5318 (12)N6—C141.3390 (16)
C3—H3A0.962 (12)N6—H1N60.901 (18)
N1—C91.3572 (11)N6—H2N60.87 (2)
N1—C51.3620 (11)C10—C111.3930 (16)
N1—H1N10.933 (14)C11—C121.3747 (19)
N2—C51.3443 (12)C11—H11A0.922 (18)
N2—H1N20.881 (17)C12—C131.379 (2)
N2—H2N20.884 (14)C12—H12A0.963 (19)
N3—C91.3453 (13)C13—C141.3862 (16)
N3—H1N30.907 (17)C13—H13A0.959 (17)
N3—H2N30.859 (18)O1W—H1W10.85 (3)
C5—C61.3931 (13)O1W—H2W10.89 (2)
C6—C71.3790 (15)
C2—O1—H1O1105.3 (10)C8—C7—C6122.24 (9)
C3—O2—H1O2108.9 (11)C8—C7—H7A121.3 (8)
O3—C1—O4124.66 (9)C6—C7—H7A116.4 (8)
O3—C1—C2118.00 (9)C7—C8—C9118.34 (9)
O4—C1—C2117.31 (8)C7—C8—H8A121.2 (9)
O1—C2—C3110.92 (7)C9—C8—H8A120.4 (9)
O1—C2—C1113.58 (7)N3—C9—N1117.68 (8)
C3—C2—C1112.37 (7)N3—C9—C8123.52 (9)
O1—C2—H2A106.5 (7)N1—C9—C8118.79 (8)
C3—C2—H2A107.6 (7)C14—N4—C10123.92 (9)
C1—C2—H2A105.4 (7)C14—N4—H1N4120.8 (10)
O2—C3—C2113.34 (7)C10—N4—H1N4115.1 (10)
O2—C3—C4112.54 (7)C10—N5—H1N5118.6 (12)
C2—C3—C4109.86 (7)C10—N5—H2N5119.8 (11)
O2—C3—H3A109.4 (7)H1N5—N5—H2N5121.5 (16)
C2—C3—H3A106.2 (7)C14—N6—H1N6120.4 (11)
C4—C3—H3A104.9 (7)C14—N6—H2N6115.8 (13)
O6—C4—O5124.53 (9)H1N6—N6—H2N6123.2 (17)
O6—C4—C3119.58 (8)N5—C10—N4116.98 (10)
O5—C4—C3115.86 (8)N5—C10—C11124.84 (11)
C9—N1—C5123.51 (8)N4—C10—C11118.18 (10)
C9—N1—H1N1117.5 (8)C12—C11—C10118.51 (11)
C5—N1—H1N1118.9 (8)C12—C11—H11A123.0 (11)
C5—N2—H1N2118.3 (11)C10—C11—H11A118.4 (11)
C5—N2—H2N2117.2 (9)C11—C12—C13122.37 (11)
H1N2—N2—H2N2117.8 (13)C11—C12—H12A116.9 (11)
C9—N3—H1N3118.8 (10)C13—C12—H12A120.7 (11)
C9—N3—H2N3116.2 (11)C12—C13—C14118.61 (11)
H1N3—N3—H2N3118.1 (15)C12—C13—H13A124.2 (10)
N2—C5—N1117.16 (8)C14—C13—H13A117.1 (10)
N2—C5—C6124.46 (9)N6—C14—N4116.97 (10)
N1—C5—C6118.38 (8)N6—C14—C13124.67 (11)
C7—C6—C5118.65 (9)N4—C14—C13118.36 (11)
C7—C6—H6A119.9 (10)H1W1—O1W—H2W1106 (2)
C5—C6—H6A121.5 (10)
O3—C1—C2—O17.58 (11)C5—C6—C7—C8−1.59 (17)
O4—C1—C2—O1−174.21 (7)C6—C7—C8—C9−0.26 (17)
O3—C1—C2—C3134.52 (9)C5—N1—C9—N3177.76 (9)
O4—C1—C2—C3−47.27 (10)C5—N1—C9—C8−3.54 (14)
O1—C2—C3—O265.36 (10)C7—C8—C9—N3−178.63 (10)
C1—C2—C3—O2−62.99 (9)C7—C8—C9—N12.75 (15)
O1—C2—C3—C4−61.50 (9)C14—N4—C10—N5−178.83 (11)
C1—C2—C3—C4170.15 (7)C14—N4—C10—C111.42 (17)
O2—C3—C4—O6−2.16 (12)N5—C10—C11—C12177.88 (13)
C2—C3—C4—O6125.14 (9)N4—C10—C11—C12−2.39 (19)
O2—C3—C4—O5176.12 (8)C10—C11—C12—C131.4 (2)
C2—C3—C4—O5−56.57 (10)C11—C12—C13—C140.6 (2)
C9—N1—C5—N2−178.91 (9)C10—N4—C14—N6−179.17 (12)
C9—N1—C5—C61.66 (14)C10—N4—C14—C130.63 (17)
N2—C5—C6—C7−178.45 (10)C12—C13—C14—N6178.15 (14)
N1—C5—C6—C70.93 (15)C12—C13—C14—N4−1.64 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.900 (16)1.840 (16)2.7315 (10)170.9 (15)
O2—H1O2···O4i0.871 (17)1.957 (17)2.8260 (11)175.6 (15)
N1—H1N1···O50.933 (13)1.740 (13)2.6660 (11)171.4 (13)
N2—H1N2···O2ii0.882 (17)2.369 (17)3.2254 (13)163.7 (14)
N2—H1N2···O6ii0.882 (17)2.461 (17)3.0531 (13)125.0 (13)
N2—H2N2···O60.884 (14)2.048 (14)2.9306 (13)176.7 (12)
N3—H1N3···O50.908 (16)2.552 (16)3.2431 (12)133.4 (13)
N3—H1N3···O4iii0.908 (16)2.519 (17)3.1842 (13)130.5 (13)
N3—H2N3···O6iv0.860 (16)2.122 (16)2.9499 (12)161.3 (16)
N4—H1N4···O3v0.924 (17)1.810 (17)2.7294 (12)172.5 (15)
N5—H1N5···O1Wvi0.827 (19)2.114 (19)2.9265 (15)167.7 (15)
N5—H2N5···O1v0.888 (17)2.243 (17)3.0557 (14)152.0 (14)
N5—H2N5···O3v0.888 (17)2.503 (16)3.2154 (15)137.8 (13)
N6—H1N6···O1Wvii0.901 (17)2.127 (17)3.0131 (18)167.5 (14)
N6—H2N6···O10.87 (2)2.189 (19)2.9851 (15)152 (2)
O1W—H1W1···O3iii0.85 (2)2.37 (3)2.9371 (13)125 (2)
O1W—H1W1···O4iii0.85 (2)2.42 (2)3.1642 (13)146 (2)
O1W—H2W1···O50.89 (2)1.93 (2)2.8153 (13)175 (2)
C2—H2A···O3iii0.963 (11)2.490 (11)3.3232 (12)144.8 (9)

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+3/2, z+1/2; (iv) x, y, z+1; (v) −x, y−1/2, −z+1/2; (vi) x, −y+1/2, z−1/2; (vii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5185).

References

  • Al-Dajani, M. T. M., Abdallah, H. H., Mohamed, N., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2508–o2509. [PMC free article] [PubMed]
  • Al-Dajani, M. T. M., Salhin, A., Mohamed, N., Loh, W.-S. & Fun, H.-K. (2009). Acta Cryst. E65, o2931–o2932. [PMC free article] [PubMed]
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography