PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2881–o2882.
Published online 2009 October 28. doi:  10.1107/S1600536809043293
PMCID: PMC2971206

3-(4-Chloro­phen­yl)-1-[(E)-1-(4-chloro­phen­yl)-2-(4-methyl­phenyl­sulfan­yl)ethen­yl]-4-(4-methyl­phenyl­sulfan­yl)-1H-pyrazole

Abstract

In the title compound, C31H24Cl2N2S2, the pyrazole ring adopts planar conformation with a maximum deviation of 0.002 (2) Å. The chloro­phenyl rings are twisted out of the plane of the pyrazole ring by 75.1 (1) and 39.5 (1)°. The crystal packing is controlled by weak intermolecular C—H(...)π interactions.

Related literature

For the pharmacological and medicinal properties of pyrazole derivatives, see: Baraldi et al. (1998 [triangle]); Bruno et al. (1990 [triangle]); Cottineau et al. (2002 [triangle]); Londershausen (1996 [triangle]); Chen & Li (1998 [triangle]); Mishra et al. (1998 [triangle]); Smith et al. (2001 [triangle]). For sp 2 hybridization, see: Beddoes et al., 1986 [triangle]). For bond-length data, see: Jin et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2881-scheme1.jpg

Experimental

Crystal data

  • C31H24Cl2N2S2
  • M r = 559.54
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2881-efi1.jpg
  • a = 9.7515 (2) Å
  • b = 10.2097 (3) Å
  • c = 27.6705 (6) Å
  • β = 96.402 (1)°
  • V = 2737.69 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 293 K
  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.883, T max = 0.921
  • 38656 measured reflections
  • 9852 independent reflections
  • 5773 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.160
  • S = 1.03
  • 9852 reflections
  • 336 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, (1997 [triangle])); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
C—H(...)π interactions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043293/bt5084sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043293/bt5084Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

supplementary crystallographic information

Comment

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities.

The ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (360.0°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.352 (2) and 1.328 (2) Å, which are shorter than single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 75.1 (1)° and 39.5 (1)°, respectively. The crystal packing is stabilized by weak C—H···π type of intermolecular interactions in addition to van der Waals forces.

Experimental

To a mixture of 1-(4-Chlorophenyl) -2-[(4-methylphenyl)sulfanyl]-1-ethanone N-(Z)-1-(4-chlorophenyl) -2-[(4-methylphenyl)sulfanyl]ethylidenehydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0°C, phosphorous oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then irradiated under microwaves for 30 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain 3-(4-Chlorophenyl)-1-(E)-1-(4-chlorophenyl)-2-[(4-methylphenyl) sulfanyl]ethenyl-4-[(4-methylphenyl)sulfanyl]-1H-pyrazole.

Refinement

All H atoms were positioned geometrically (C—H=0.93–0.96 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.
Perspective view of the molecule showing the displacement ellipsoids are drawn at 50% probability level. H atoms have been omitted for clarity.

Crystal data

C31H24Cl2N2S2F(000) = 1160
Mr = 559.54Dx = 1.358 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2546 reflections
a = 9.7515 (2) Åθ = 1.5–32.5°
b = 10.2097 (3) ŵ = 0.41 mm1
c = 27.6705 (6) ÅT = 293 K
β = 96.402 (1)°Block, colourless
V = 2737.69 (11) Å30.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer9852 independent reflections
Radiation source: fine-focus sealed tube5773 reflections with I > 2σ(I)
graphiteRint = 0.032
ω and [var phi] scansθmax = 32.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −14→14
Tmin = 0.883, Tmax = 0.921k = −15→15
38656 measured reflectionsl = −41→39

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0723P)2 + 0.5516P] where P = (Fo2 + 2Fc2)/3
9852 reflections(Δ/σ)max = 0.003
336 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.08583 (6)−0.11974 (5)0.63584 (2)0.05549 (15)
S20.25311 (5)0.35982 (5)0.42760 (2)0.05549 (15)
Cl1−0.13889 (7)0.45353 (6)0.68961 (2)0.07471 (19)
Cl20.48797 (8)−0.21313 (9)0.30187 (2)0.0905 (2)
N10.23543 (16)0.02119 (14)0.49711 (5)0.0415 (3)
N20.18350 (16)0.10815 (14)0.52737 (5)0.0421 (3)
C30.1835 (2)0.23137 (18)0.50948 (7)0.0472 (4)
H30.15310.30620.52420.057*
C40.23608 (19)0.22595 (18)0.46595 (7)0.0446 (4)
C50.26756 (18)0.09181 (17)0.45965 (6)0.0398 (4)
C60.13934 (19)0.06576 (17)0.57196 (6)0.0410 (4)
C70.1621 (2)−0.05738 (19)0.58678 (7)0.0485 (4)
H70.2196−0.11070.57070.058*
C80.2206 (2)−0.21076 (18)0.66790 (6)0.0461 (4)
C90.3584 (2)−0.1814 (2)0.66695 (8)0.0583 (5)
H90.3845−0.11160.64840.070*
C100.4568 (3)−0.2562 (2)0.69371 (8)0.0653 (6)
H100.5496−0.23700.69240.078*
C110.4224 (3)−0.3585 (2)0.72236 (7)0.0606 (5)
C120.2849 (3)−0.3848 (2)0.72369 (8)0.0614 (6)
H120.2592−0.45240.74330.074*
C130.1842 (2)−0.3134 (2)0.69661 (7)0.0566 (5)
H130.0917−0.33400.69760.068*
C140.07032 (18)0.16654 (17)0.59941 (6)0.0389 (3)
C150.1380 (2)0.2157 (2)0.64224 (7)0.0495 (4)
H150.22710.18770.65270.059*
C160.0749 (2)0.3054 (2)0.66948 (7)0.0523 (5)
H160.12120.33880.69800.063*
C17−0.0571 (2)0.34490 (18)0.65410 (6)0.0459 (4)
C18−0.1264 (2)0.29888 (19)0.61145 (7)0.0478 (4)
H18−0.21550.32730.60120.057*
C19−0.06171 (19)0.20999 (18)0.58410 (6)0.0443 (4)
H19−0.10740.17890.55510.053*
C200.4342 (2)0.38614 (17)0.43419 (7)0.0441 (4)
C210.4884 (2)0.4601 (2)0.39927 (7)0.0521 (5)
H210.43010.49670.37400.063*
C220.6289 (2)0.4800 (2)0.40176 (8)0.0549 (5)
H220.66390.53050.37800.066*
C230.7187 (2)0.42680 (19)0.43848 (8)0.0524 (5)
C240.6620 (3)0.3574 (2)0.47388 (9)0.0679 (6)
H240.71990.32270.49970.081*
C250.5222 (2)0.3377 (2)0.47219 (8)0.0649 (6)
H250.48690.29140.49700.078*
C260.32826 (18)0.02448 (17)0.42028 (6)0.0400 (4)
C270.2903 (2)0.0553 (2)0.37175 (6)0.0510 (5)
H270.23100.12520.36360.061*
C280.3405 (2)−0.0176 (2)0.33562 (7)0.0576 (5)
H280.31470.00280.30310.069*
C290.4282 (2)−0.1200 (2)0.34765 (7)0.0553 (5)
C300.4714 (2)−0.1501 (2)0.39539 (8)0.0567 (5)
H300.5336−0.21780.40320.068*
C310.4201 (2)−0.07719 (19)0.43141 (7)0.0490 (4)
H310.4480−0.09690.46380.059*
C320.5335 (3)−0.4378 (3)0.75125 (10)0.0887 (9)
H32A0.5850−0.48540.72940.133*
H32B0.4918−0.49830.77180.133*
H32C0.5942−0.38020.77090.133*
C330.8720 (2)0.4392 (3)0.43899 (11)0.0728 (7)
H33A0.90790.36170.42530.109*
H33B0.91360.44970.47190.109*
H33C0.89290.51400.42010.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0571 (3)0.0534 (3)0.0597 (3)0.0077 (2)0.0230 (2)0.0147 (2)
S20.0492 (3)0.0490 (3)0.0690 (3)0.0058 (2)0.0096 (2)0.0254 (2)
Cl10.0911 (5)0.0722 (4)0.0659 (3)0.0193 (3)0.0308 (3)−0.0139 (3)
Cl20.0853 (5)0.1220 (6)0.0684 (4)−0.0011 (4)0.0276 (3)−0.0391 (4)
N10.0492 (8)0.0357 (7)0.0409 (7)0.0026 (6)0.0111 (6)0.0010 (6)
N20.0519 (9)0.0344 (7)0.0416 (7)0.0020 (6)0.0125 (6)0.0017 (6)
C30.0532 (11)0.0349 (9)0.0553 (10)0.0047 (8)0.0140 (8)0.0039 (7)
C40.0460 (10)0.0392 (9)0.0498 (9)0.0025 (8)0.0112 (8)0.0094 (7)
C50.0398 (9)0.0391 (9)0.0411 (8)0.0002 (7)0.0066 (7)0.0051 (7)
C60.0451 (9)0.0391 (9)0.0402 (8)0.0021 (7)0.0107 (7)0.0008 (7)
C70.0563 (11)0.0428 (10)0.0494 (9)0.0078 (8)0.0193 (8)0.0051 (8)
C80.0559 (11)0.0412 (9)0.0433 (9)−0.0014 (8)0.0143 (8)0.0009 (7)
C90.0607 (13)0.0519 (12)0.0640 (12)−0.0077 (10)0.0141 (10)0.0108 (9)
C100.0556 (13)0.0749 (15)0.0660 (13)−0.0008 (11)0.0096 (10)0.0038 (11)
C110.0736 (15)0.0634 (14)0.0451 (10)0.0151 (11)0.0085 (9)−0.0005 (9)
C120.0828 (16)0.0545 (12)0.0484 (10)0.0020 (11)0.0147 (10)0.0124 (9)
C130.0614 (13)0.0586 (12)0.0522 (11)−0.0069 (10)0.0174 (9)0.0101 (9)
C140.0424 (9)0.0360 (8)0.0393 (8)−0.0002 (7)0.0090 (7)0.0014 (6)
C150.0450 (10)0.0531 (11)0.0491 (10)0.0040 (8)−0.0004 (8)−0.0048 (8)
C160.0611 (12)0.0535 (11)0.0415 (9)−0.0004 (9)0.0014 (8)−0.0081 (8)
C170.0562 (11)0.0402 (9)0.0447 (9)0.0030 (8)0.0198 (8)−0.0002 (7)
C180.0411 (10)0.0457 (10)0.0574 (10)0.0025 (8)0.0090 (8)−0.0002 (8)
C190.0433 (10)0.0427 (9)0.0465 (9)−0.0016 (8)0.0029 (7)−0.0048 (7)
C200.0502 (10)0.0361 (9)0.0469 (9)0.0048 (7)0.0091 (8)0.0047 (7)
C210.0570 (12)0.0542 (11)0.0459 (9)0.0034 (9)0.0086 (8)0.0114 (8)
C220.0569 (12)0.0552 (12)0.0549 (11)−0.0034 (10)0.0162 (9)0.0050 (9)
C230.0513 (11)0.0397 (10)0.0659 (12)−0.0011 (8)0.0060 (9)−0.0104 (8)
C240.0593 (13)0.0685 (15)0.0720 (14)0.0010 (11)−0.0097 (11)0.0181 (12)
C250.0635 (14)0.0664 (14)0.0637 (13)−0.0024 (11)0.0024 (10)0.0300 (11)
C260.0375 (9)0.0437 (9)0.0396 (8)−0.0027 (7)0.0075 (6)0.0031 (7)
C270.0421 (10)0.0679 (13)0.0428 (9)0.0010 (9)0.0043 (7)0.0072 (8)
C280.0469 (11)0.0878 (16)0.0382 (9)−0.0089 (11)0.0059 (8)0.0003 (9)
C290.0462 (11)0.0725 (14)0.0498 (10)−0.0123 (10)0.0173 (8)−0.0154 (9)
C300.0568 (12)0.0572 (12)0.0578 (11)0.0074 (10)0.0141 (9)−0.0059 (9)
C310.0563 (11)0.0492 (10)0.0416 (9)0.0053 (9)0.0060 (8)0.0022 (7)
C320.100 (2)0.100 (2)0.0659 (15)0.0409 (18)0.0087 (14)0.0101 (14)
C330.0553 (13)0.0606 (14)0.1015 (19)−0.0034 (11)0.0041 (12)−0.0168 (13)

Geometric parameters (Å, °)

S1—C71.7398 (19)C16—H160.9300
S1—C81.766 (2)C17—C181.376 (3)
S2—C41.7496 (18)C18—C191.378 (3)
S2—C201.776 (2)C18—H180.9300
Cl1—C171.7340 (18)C19—H190.9300
Cl2—C291.736 (2)C20—C251.373 (3)
N1—C51.328 (2)C20—C211.377 (3)
N1—N21.3565 (19)C21—C221.379 (3)
N2—C31.352 (2)C21—H210.9300
N2—C61.419 (2)C22—C231.376 (3)
C3—C41.362 (3)C22—H220.9300
C3—H30.9300C23—C241.374 (3)
C4—C51.418 (3)C23—C331.500 (3)
C5—C261.467 (2)C24—C251.373 (3)
C6—C71.333 (3)C24—H240.9300
C6—C141.484 (2)C25—H250.9300
C7—H70.9300C26—C311.383 (3)
C8—C91.380 (3)C26—C271.389 (2)
C8—C131.385 (3)C27—C281.379 (3)
C9—C101.377 (3)C27—H270.9300
C9—H90.9300C28—C291.369 (3)
C10—C111.376 (3)C28—H280.9300
C10—H100.9300C29—C301.375 (3)
C11—C121.372 (4)C30—C311.381 (3)
C11—C321.508 (3)C30—H300.9300
C12—C131.376 (3)C31—H310.9300
C12—H120.9300C32—H32A0.9600
C13—H130.9300C32—H32B0.9600
C14—C191.383 (3)C32—H32C0.9600
C14—C151.385 (2)C33—H33A0.9600
C15—C161.374 (3)C33—H33B0.9600
C15—H150.9300C33—H33C0.9600
C16—C171.371 (3)
C7—S1—C8103.04 (9)C19—C18—H18120.5
C4—S2—C20102.51 (9)C18—C19—C14120.68 (17)
C5—N1—N2105.26 (13)C18—C19—H19119.7
C3—N2—N1111.58 (14)C14—C19—H19119.7
C3—N2—C6127.92 (15)C25—C20—C21118.63 (19)
N1—N2—C6120.49 (14)C25—C20—S2123.61 (16)
N2—C3—C4107.54 (16)C21—C20—S2117.76 (14)
N2—C3—H3126.2C20—C21—C22120.14 (18)
C4—C3—H3126.2C20—C21—H21119.9
C3—C4—C5104.82 (15)C22—C21—H21119.9
C3—C4—S2125.11 (15)C23—C22—C21121.67 (19)
C5—C4—S2130.04 (14)C23—C22—H22119.2
N1—C5—C4110.80 (15)C21—C22—H22119.2
N1—C5—C26118.34 (15)C24—C23—C22117.2 (2)
C4—C5—C26130.85 (15)C24—C23—C33121.1 (2)
C7—C6—N2119.92 (16)C22—C23—C33121.7 (2)
C7—C6—C14124.46 (16)C25—C24—C23121.9 (2)
N2—C6—C14115.62 (14)C25—C24—H24119.1
C6—C7—S1120.93 (15)C23—C24—H24119.1
C6—C7—H7119.5C20—C25—C24120.4 (2)
S1—C7—H7119.5C20—C25—H25119.8
C9—C8—C13119.17 (19)C24—C25—H25119.8
C9—C8—S1123.22 (15)C31—C26—C27118.79 (17)
C13—C8—S1117.56 (16)C31—C26—C5119.41 (15)
C10—C9—C8119.4 (2)C27—C26—C5121.71 (17)
C10—C9—H9120.3C28—C27—C26120.04 (19)
C8—C9—H9120.3C28—C27—H27120.0
C11—C10—C9122.1 (2)C26—C27—H27120.0
C11—C10—H10119.0C29—C28—C27119.92 (18)
C9—C10—H10119.0C29—C28—H28120.0
C12—C11—C10117.8 (2)C27—C28—H28120.0
C12—C11—C32121.8 (2)C28—C29—C30121.33 (19)
C10—C11—C32120.4 (2)C28—C29—Cl2119.50 (16)
C11—C12—C13121.5 (2)C30—C29—Cl2119.16 (18)
C11—C12—H12119.3C29—C30—C31118.5 (2)
C13—C12—H12119.3C29—C30—H30120.8
C12—C13—C8120.0 (2)C31—C30—H30120.8
C12—C13—H13120.0C30—C31—C26121.40 (18)
C8—C13—H13120.0C30—C31—H31119.3
C19—C14—C15118.97 (16)C26—C31—H31119.3
C19—C14—C6121.71 (15)C11—C32—H32A109.5
C15—C14—C6119.30 (16)C11—C32—H32B109.5
C16—C15—C14120.76 (18)H32A—C32—H32B109.5
C16—C15—H15119.6C11—C32—H32C109.5
C14—C15—H15119.6H32A—C32—H32C109.5
C17—C16—C15119.21 (17)H32B—C32—H32C109.5
C17—C16—H16120.4C23—C33—H33A109.5
C15—C16—H16120.4C23—C33—H33B109.5
C16—C17—C18121.34 (17)H33A—C33—H33B109.5
C16—C17—Cl1119.20 (15)C23—C33—H33C109.5
C18—C17—Cl1119.46 (16)H33A—C33—H33C109.5
C17—C18—C19119.02 (18)H33B—C33—H33C109.5
C17—C18—H18120.5
C5—N1—N2—C3−0.3 (2)C19—C14—C15—C160.6 (3)
C5—N1—N2—C6−179.36 (16)C6—C14—C15—C16−177.49 (18)
N1—N2—C3—C40.4 (2)C14—C15—C16—C170.8 (3)
C6—N2—C3—C4179.37 (18)C15—C16—C17—C18−1.5 (3)
N2—C3—C4—C5−0.3 (2)C15—C16—C17—Cl1177.69 (16)
N2—C3—C4—S2178.16 (14)C16—C17—C18—C190.8 (3)
C20—S2—C4—C3108.01 (18)Cl1—C17—C18—C19−178.36 (15)
C20—S2—C4—C5−73.92 (19)C17—C18—C19—C140.6 (3)
N2—N1—C5—C40.10 (19)C15—C14—C19—C18−1.3 (3)
N2—N1—C5—C26179.47 (15)C6—C14—C19—C18176.76 (17)
C3—C4—C5—N10.1 (2)C4—S2—C20—C25−18.3 (2)
S2—C4—C5—N1−178.23 (15)C4—S2—C20—C21162.26 (16)
C3—C4—C5—C26−179.13 (18)C25—C20—C21—C222.6 (3)
S2—C4—C5—C262.5 (3)S2—C20—C21—C22−177.86 (16)
C3—N2—C6—C7−171.8 (2)C20—C21—C22—C230.4 (3)
N1—N2—C6—C77.1 (3)C21—C22—C23—C24−2.7 (3)
C3—N2—C6—C147.6 (3)C21—C22—C23—C33174.9 (2)
N1—N2—C6—C14−173.51 (15)C22—C23—C24—C252.0 (4)
N2—C6—C7—S1−169.62 (14)C33—C23—C24—C25−175.6 (2)
C14—C6—C7—S111.0 (3)C21—C20—C25—C24−3.2 (4)
C8—S1—C7—C6−138.30 (17)S2—C20—C25—C24177.26 (19)
C7—S1—C8—C927.9 (2)C23—C24—C25—C200.9 (4)
C7—S1—C8—C13−154.47 (16)N1—C5—C26—C31−37.2 (2)
C13—C8—C9—C101.3 (3)C4—C5—C26—C31142.1 (2)
S1—C8—C9—C10178.90 (17)N1—C5—C26—C27139.28 (18)
C8—C9—C10—C11−1.3 (4)C4—C5—C26—C27−41.5 (3)
C9—C10—C11—C120.0 (3)C31—C26—C27—C282.1 (3)
C9—C10—C11—C32−179.8 (2)C5—C26—C27—C28−174.36 (18)
C10—C11—C12—C131.3 (3)C26—C27—C28—C29−0.3 (3)
C32—C11—C12—C13−178.9 (2)C27—C28—C29—C30−2.0 (3)
C11—C12—C13—C8−1.3 (3)C27—C28—C29—Cl2178.72 (16)
C9—C8—C13—C12−0.1 (3)C28—C29—C30—C312.3 (3)
S1—C8—C13—C12−177.79 (17)Cl2—C29—C30—C31−178.35 (16)
C7—C6—C14—C19−108.0 (2)C29—C30—C31—C26−0.5 (3)
N2—C6—C14—C1972.6 (2)C27—C26—C31—C30−1.7 (3)
C7—C6—C14—C1570.0 (3)C5—C26—C31—C30174.82 (18)
N2—C6—C14—C15−109.32 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C33—H33C···Cg3i0.962.903.851 (3)171
C9—H9···Cg5ii0.933.033.839 (2)147

Symmetry codes: (i) −x+2, −y, −z; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5084).

References

  • Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66. [PubMed]
  • Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  • Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem.12, 2105–2108. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [PubMed]
  • Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  • Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199–200.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography