PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): i81.
Published online 2009 October 28. doi:  10.1107/S1600536809044043
PMCID: PMC2971201

Penta­potassium praseodymium(III) dilithium deca­fluoride, K5PrLi2F10

Abstract

The crystal structure of K5PrLi2F10 is isotypic with those of other K5 RELi2F10 compounds (RE = Eu, Nd). The lanthanoid ions are isolated in K5PrLi2F10, with a mean separation between the Pr ions of 7.356 Å. It classifies this crystal as a so-called self-activated material containing lanthanoid ions within the matrix. Except for two K+ and two F ions, all atoms are located on sites with m symmetry. In the structure, distorted PrF8 dodeca­hedra and two different LiF4 tetra­hedra share F atoms, forming sheets parallel to (100). The isolated PrF8 dodeca­hedra exhibit a mean Pr—F distance of 2.406 Å. The K+ cations are located within and between these sheets, leading to highly irregular KFx polyhedra with coordination numbers of eight and nine for the alkali metal cations.

Related literature

The structures of the isotypic Nd and Eu analogues have been reported by Hong & McCollum (1979 [triangle]) and Gagor (2009 [triangle]). For background to bond-valence calculations, see: Brown (1992 [triangle], 2002 [triangle]); Mattausch et al. (1991 [triangle]). Synthetic details were described by Ryba-Romanowski et al. (2007 [triangle]).

Experimental

Crystal data

  • K5PrLi2F10
  • M r = 540.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-00i81-efi1.jpg
  • a = 20.6492 (6) Å
  • b = 7.7903 (3) Å
  • c = 6.9255 (2) Å
  • V = 1114.06 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.34 mm−1
  • T = 295 K
  • 0.35 × 0.13 × 0.05 mm

Data collection

  • Kuma KM-4 with CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.40, T max = 0.73
  • 24749 measured reflections
  • 4910 independent reflections
  • 3709 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.045
  • S = 1.02
  • 4910 reflections
  • 98 parameters
  • Δρmax = 1.17 e Å−3
  • Δρmin = −2.04 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044043/wm2268sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044043/wm2268Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title crystal belongs to so-called self-activated materials containing lanthanoid ions within the matrix. An important feature of these systems is a large separation between the closest lanthanoid ions, which is one of the crucial factors governing the self-quenching of luminescence.

In the structure, two different LiF4 tetrahedra together with distorted PrF8 dodecahedra form sheets expanding perpendicular to [100]. K1 atoms occupy cavities within the sheets and are surrounded by 9 F- ions in a mean distance of 2.780 Å. The remaining potassium atoms are located between the sheets within a KF9 and KF8 environment. Each PrF8 dodecahedron is surrounded by twelve others with a minimum and maximum Pr—Pr separation of 6.7656 (2) and 7.8684 (2) Å, and individual distances of: 2× 6.7656 (2), 2× 6.9169 (2), 2× 6.9255 (2), 2× 7.7903 (3) and 4× 7.8684 (2) Å.

The bond valence sums of all metal atoms have been calculated from the received structure model using the bond-valence method (Brown, 1992, 2002; Mattausch et al., 1991); Pr 2.86, K1 1.05, K2 0.98, K3 1.06, and Li 1.08 v.u. The Pr ion is slightly under-bonded which may be associated with the distorted surrounding of this cation. When such distortions occur, the equal-valence rule is not obeyed (Brown, 1992). The valences of K atoms are close to the formal charge of +1. The Li position is over-bonded with a 8.3% higher bond-valence sum than those expected from the formal charge of +1.

Experimental

The K5PrLi2F10 crystal was grown from commercially available KF, PrF3 and LiF (Aldrich 99.99%, anhydrous) using the Bridgman method in a graphite crucible under argon atmosphere. The reagents were heated at 923 K (melting point 813 K). The pulling rate was 1mm/h, temperature gradient was 100°/cm.

Refinement

In the final Fourier map, the highest peak is 1.22 Å from atom Pr1 and the deepest hole is 0.55 Å from the same atom.

Figures

Fig. 1.
Crystal packing of the K5PrLi2F10 structure as seen down [010]. Displacement ellipsoids have been drawn at the 50% probability level.

Crystal data

K5PrLi2F10F(000) = 1000
Mr = 540.29Dx = 3.221 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 11195 reflections
a = 20.6492 (6) Åθ = 2.6–47.0°
b = 7.7903 (3) ŵ = 6.34 mm1
c = 6.9255 (2) ÅT = 295 K
V = 1114.06 (6) Å3Rectangular prism, colourless
Z = 40.35 × 0.13 × 0.05 mm

Data collection

Kuma KM-4 with CCD area-detector diffractometer4910 independent reflections
Radiation source: fine-focus sealed tube3709 reflections with I > 2σ(I)
graphiteRint = 0.045
Detector resolution: 1024x1024 with blocks 2x2, 33.133pixel/mm pixels mm-1θmax = 47.1°, θmin = 3.1°
ω scansh = −19→42
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −16→13
Tmin = 0.40, Tmax = 0.73l = −13→11
24749 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029w = 1/[σ2(Fo2) + (0.0151P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.02Δρmax = 1.17 e Å3
4910 reflectionsΔρmin = −2.04 e Å3
98 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0319 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.To eliminate the weak reflections measured at high theta angles a 2theta limit was applied during structure refinement. The refinement on the whole data set (2theta = 47°) only slightly improved the standard deviations. Concluding, it was decided to refine the structure using a maximum measured 2theta limit. For completeness calculations the 2theta threshold was set to 28.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
K10.456661 (15)0.97842 (4)0.25210 (4)0.01639 (5)
K20.283103 (15)0.02682 (4)0.42595 (5)0.01786 (6)
K30.35981 (2)0.25000.94040 (6)0.01865 (8)
Pr10.107262 (4)0.25000.239205 (12)0.00794 (2)
Li10.92241 (16)0.25000.9697 (5)0.0140 (6)
Li20.67429 (16)0.25000.8399 (5)0.0138 (6)
F10.00854 (5)0.25000.04643 (17)0.0152 (2)
F20.01862 (6)0.25000.45774 (17)0.0189 (2)
F30.09014 (4)0.95753 (10)0.15779 (13)0.01896 (17)
F40.14806 (4)0.07426 (10)0.50594 (12)0.01643 (16)
F50.21956 (6)0.25000.19130 (18)0.0182 (2)
F60.37398 (6)0.25000.31393 (18)0.0170 (2)
F70.75970 (6)0.25000.79114 (17)0.0171 (2)
F80.63138 (6)0.25000.60663 (16)0.0160 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
K10.01604 (12)0.01537 (12)0.01777 (13)−0.00135 (9)−0.00063 (10)−0.00158 (10)
K20.01912 (13)0.01524 (13)0.01921 (14)0.00175 (10)−0.00062 (11)−0.00098 (10)
K30.0311 (2)0.01106 (17)0.01382 (18)0.000−0.00294 (15)0.000
Pr10.00890 (4)0.00760 (4)0.00733 (4)0.000−0.00056 (3)0.000
Li10.0140 (15)0.0148 (16)0.0131 (15)0.000−0.0021 (12)0.000
Li20.0128 (16)0.0152 (16)0.0132 (15)0.0000.0005 (12)0.000
F10.0111 (5)0.0188 (6)0.0156 (5)0.000−0.0023 (4)0.000
F20.0180 (6)0.0243 (6)0.0144 (5)0.0000.0026 (4)0.000
F30.0249 (4)0.0109 (4)0.0211 (4)0.0000 (3)−0.0063 (3)−0.0032 (3)
F40.0240 (4)0.0101 (3)0.0153 (4)−0.0001 (3)−0.0031 (3)−0.0007 (3)
F50.0129 (5)0.0237 (6)0.0182 (5)0.000−0.0015 (4)0.000
F60.0170 (5)0.0210 (6)0.0132 (5)0.000−0.0024 (4)0.000
F70.0144 (5)0.0210 (6)0.0160 (5)0.0000.0017 (4)0.000
F80.0155 (5)0.0212 (6)0.0112 (5)0.000−0.0015 (4)0.000

Geometric parameters (Å, °)

K1—F8i2.7256 (9)K3—F5xv3.3772 (13)
K1—F1ii2.7514 (8)Pr1—F52.3426 (12)
K1—F2iii2.7537 (10)Pr1—F3xviii2.3737 (8)
K1—F6iv2.7521 (9)Pr1—F3xix2.3737 (8)
K1—F4iii2.7841 (9)Pr1—F22.3751 (12)
K1—F1v2.7996 (9)Pr1—F12.4368 (11)
K1—F3vi2.8307 (10)Pr1—F8xx2.4463 (11)
K1—F2ii2.8679 (9)Pr1—F4xxi2.4488 (8)
K1—Li1vii2.948 (2)Pr1—F42.4488 (8)
K1—F3viii3.0127 (9)Pr1—Li2x3.227 (3)
K1—Li2i3.299 (3)Li1—F6xvii1.802 (4)
K1—Li1ix3.416 (3)Li1—F1xxii1.856 (4)
K2—F7x2.6636 (9)Li1—F3i1.8602 (19)
K2—F62.6733 (10)Li1—F3xxiii1.8602 (19)
K2—F52.7176 (10)Li1—K1xxiv2.948 (2)
K2—F7xi2.7735 (8)Li1—K1xxv2.948 (2)
K2—F8xi2.7964 (8)Li1—K3xvii3.120 (3)
K2—F5xii2.8338 (9)Li1—K1xxvi3.416 (3)
K2—F42.8669 (9)Li1—K1xxvii3.416 (3)
K2—Li2xi2.969 (2)Li1—K2xvii3.438 (3)
K2—F3v3.0730 (10)Li1—K2xxviii3.438 (3)
K2—Li2x3.271 (3)Li2—F71.796 (4)
K2—F4xiii3.3319 (9)Li2—F4xvii1.819 (2)
K2—Li1x3.438 (3)Li2—F4xxviii1.819 (2)
K3—F4xiv2.5717 (8)Li2—F81.843 (4)
K3—F4xii2.5717 (8)Li2—K2xi2.969 (2)
K3—F6xv2.6035 (13)Li2—K2xxix2.969 (2)
K3—F7x2.6161 (12)Li2—Pr1xvii3.227 (3)
K3—F3v2.7409 (9)Li2—K2xxviii3.271 (3)
K3—F3xvi2.7409 (9)Li2—K2xvii3.271 (3)
K3—Li1x3.120 (3)Li2—K1i3.299 (3)
K3—F2xvii3.3544 (13)Li2—K1xxiii3.299 (3)
F8i—K1—F1ii125.43 (3)F4xxi—Pr1—F467.98 (4)
F8i—K1—F2iii88.14 (3)F6xvii—Li1—F1xxii107.07 (18)
F1ii—K1—F2iii143.14 (3)F6xvii—Li1—F3i108.50 (12)
F8i—K1—F6iv91.85 (3)F1xxii—Li1—F3i105.63 (12)
F1ii—K1—F6iv64.63 (3)F6xvii—Li1—F3xxiii108.50 (12)
F2iii—K1—F6iv136.63 (3)F1xxii—Li1—F3xxiii105.63 (12)
F8i—K1—F4iii66.76 (3)F3i—Li1—F3xxiii120.71 (19)
F1ii—K1—F4iii136.58 (3)F7—Li2—F4xvii113.76 (13)
F2iii—K1—F4iii66.13 (3)F7—Li2—F4xxviii113.76 (13)
F6iv—K1—F4iii74.14 (3)F4xvii—Li2—F4xxviii97.67 (17)
F8i—K1—F1v59.66 (3)F7—Li2—F8107.90 (19)
F1ii—K1—F1v91.123 (11)F4xvii—Li2—F8111.81 (14)
F2iii—K1—F1v94.63 (3)F4xxviii—Li2—F8111.81 (14)
F6iv—K1—F1v122.31 (3)Li1xxx—F1—Pr1163.42 (12)
F4iii—K1—F1v123.47 (3)Li1xxx—F1—K1xxxi76.83 (7)
F8i—K1—F3vi122.20 (3)Pr1—F1—K1xxxi92.75 (3)
F1ii—K1—F3vi63.47 (3)Li1xxx—F1—K1xxxii76.83 (7)
F2iii—K1—F3vi86.88 (3)Pr1—F1—K1xxxii92.75 (3)
F6iv—K1—F3vi127.87 (3)K1xxxi—F1—K1xxxii100.52 (4)
F4iii—K1—F3vi151.98 (3)Li1xxx—F1—K1iii92.14 (9)
F1v—K1—F3vi63.45 (3)Pr1—F1—K1iii100.61 (3)
F8i—K1—F2ii163.96 (3)K1xxxi—F1—K1iii88.877 (11)
F1ii—K1—F2ii61.06 (3)K1xxxii—F1—K1iii163.31 (4)
F2iii—K1—F2ii91.081 (12)Li1xxx—F1—K1xxxiii92.14 (9)
F6iv—K1—F2ii77.79 (3)Pr1—F1—K1xxxiii100.61 (3)
F4iii—K1—F2ii98.33 (3)K1xxxi—F1—K1xxxiii163.31 (4)
F1v—K1—F2ii136.33 (3)K1xxxii—F1—K1xxxiii88.877 (11)
F3vi—K1—F2ii73.73 (3)K1iii—F1—K1xxxiii78.93 (3)
F8i—K1—F3viii63.86 (3)Pr1—F2—K1xvi109.20 (4)
F1ii—K1—F3viii61.62 (3)Pr1—F2—K1v109.20 (4)
F2iii—K1—F3viii148.97 (3)K1xvi—F2—K1v80.51 (3)
F6iv—K1—F3viii61.87 (3)Pr1—F2—K1xxxi91.20 (3)
F4iii—K1—F3viii110.26 (3)K1xvi—F2—K1xxxi159.16 (5)
F1v—K1—F3viii60.57 (3)K1v—F2—K1xxxi88.919 (12)
F3vi—K1—F3viii96.68 (2)Pr1—F2—K1xxxii91.20 (3)
F2ii—K1—F3viii119.57 (3)K1xvi—F2—K1xxxii88.919 (12)
Li1vii—K1—F3viii36.35 (5)K1v—F2—K1xxxii159.16 (5)
F7x—K2—F685.20 (3)K1xxxi—F2—K1xxxii95.07 (4)
F7x—K2—F586.26 (3)Pr1—F2—K3x152.55 (5)
F6—K2—F575.48 (3)K1xvi—F2—K3x91.46 (3)
F7x—K2—F7xi148.04 (2)K1v—F2—K3x91.46 (3)
F6—K2—F7xi124.90 (3)K1xxxi—F2—K3x70.76 (3)
F5—K2—F7xi91.11 (3)K1xxxii—F2—K3x70.76 (3)
F7x—K2—F8xi132.63 (3)Li1i—F3—Pr1iv165.41 (10)
F6—K2—F8xi92.00 (3)Li1i—F3—K3iii83.04 (9)
F5—K2—F8xi138.59 (3)Pr1iv—F3—K3iii109.90 (3)
F7xi—K2—F8xi63.76 (3)Li1i—F3—K1xx91.08 (11)
F7x—K2—F5xii90.93 (3)Pr1iv—F3—K1xx92.15 (3)
F6—K2—F5xii134.17 (3)K3iii—F3—K1xx104.10 (3)
F5—K2—F5xii149.912 (14)Li1i—F3—K1xxxiv69.92 (9)
F7xi—K2—F5xii75.74 (3)Pr1iv—F3—K1xxxiv96.33 (3)
F8xi—K2—F5xii58.52 (3)K3iii—F3—K1xxxiv152.20 (3)
F7x—K2—F466.25 (3)K1xx—F3—K1xxxiv83.32 (2)
F6—K2—F4130.92 (3)Li1i—F3—K2iii84.56 (11)
F5—K2—F464.12 (3)Pr1iv—F3—K2iii87.66 (3)
F7xi—K2—F483.97 (3)K3iii—F3—K2iii94.32 (3)
F8xi—K2—F4136.82 (3)K1xx—F3—K2iii160.43 (4)
F5xii—K2—F487.36 (3)K1xxxiv—F3—K2iii77.26 (2)
F7x—K2—F3v75.18 (3)Li2x—F4—Pr197.15 (9)
F6—K2—F3v61.83 (3)Li2x—F4—K3xiii149.53 (9)
F5—K2—F3v134.29 (3)Pr1—F4—K3xiii113.22 (3)
F7xi—K2—F3v125.84 (3)Li2x—F4—K1v89.01 (11)
F8xi—K2—F3v62.28 (3)Pr1—F4—K1v106.09 (3)
F5xii—K2—F3v73.02 (3)K3xiii—F4—K1v85.08 (3)
F4—K2—F3v136.25 (3)Li2x—F4—K285.46 (11)
Li2xi—K2—F3v95.76 (7)Pr1—F4—K2105.13 (3)
F7x—K2—F4xiii150.90 (3)K3xiii—F4—K284.30 (3)
F6—K2—F4xiii66.48 (3)K1v—F4—K2148.74 (3)
F5—K2—F4xiii80.51 (3)Li2x—F4—K2xii62.51 (9)
F7xi—K2—F4xiii58.60 (3)Pr1—F4—K2xii159.63 (3)
F8xi—K2—F4xiii58.53 (3)K3xiii—F4—K2xii87.07 (3)
F5xii—K2—F4xiii113.24 (3)K1v—F4—K2xii76.23 (2)
F4—K2—F4xiii127.88 (3)K2—F4—K2xii73.936 (19)
Li2xi—K2—F4xiii32.91 (5)Pr1—F5—K2xxi113.16 (4)
F3v—K2—F4xiii95.86 (2)Pr1—F5—K2113.16 (4)
Li2x—K2—F4xiii148.36 (6)K2xxi—F5—K279.55 (4)
F4xiv—K3—F4xii158.39 (4)Pr1—F5—K2xiii94.16 (3)
F4xiv—K3—F6xv80.31 (2)K2xxi—F5—K2xiii152.13 (5)
F4xii—K3—F6xv80.31 (2)K2—F5—K2xiii84.854 (11)
F4xiv—K3—F7x93.34 (2)Pr1—F5—K2xxxv94.16 (3)
F4xii—K3—F7x93.34 (2)K2xxi—F5—K2xxxv84.854 (11)
F6xv—K3—F7x134.26 (4)K2—F5—K2xxxv152.13 (5)
F4xiv—K3—F3v136.82 (3)K2xiii—F5—K2xxxv99.10 (4)
F4xii—K3—F3v64.56 (3)Pr1—F5—K3xxxvi157.18 (5)
F6xv—K3—F3v131.85 (3)K2xxi—F5—K3xxxvi83.90 (3)
F7x—K3—F3v81.97 (3)K2—F5—K3xxxvi83.90 (3)
F4xiv—K3—F3xvi64.56 (3)K2xiii—F5—K3xxxvi71.52 (3)
F4xii—K3—F3xvi136.82 (3)K2xxxv—F5—K3xxxvi71.52 (3)
F6xv—K3—F3xvi131.85 (3)Li1x—F6—K3xxxvi152.74 (12)
F7x—K3—F3xvi81.97 (3)Li1x—F6—K298.53 (9)
F3v—K3—F3xvi72.29 (4)K3xxxvi—F6—K2102.09 (4)
F4xiv—K3—F2xvii91.41 (2)Li1x—F6—K2xxi98.53 (9)
F4xii—K3—F2xvii91.41 (2)K3xxxvi—F6—K2xxi102.09 (4)
F6xv—K3—F2xvii71.40 (4)K2—F6—K2xxi81.14 (4)
F7x—K3—F2xvii154.34 (4)Li1x—F6—K1xix77.59 (7)
F3v—K3—F2xvii77.38 (3)K3xxxvi—F6—K1xix85.13 (3)
F3xvi—K3—F2xvii77.38 (3)K2—F6—K1xix168.70 (4)
Li1x—K3—F2xvii77.66 (7)K2xxi—F6—K1xix88.891 (10)
F4xiv—K3—F5xv81.66 (2)Li1x—F6—K1xviii77.59 (7)
F4xii—K3—F5xv81.66 (2)K3xxxvi—F6—K1xviii85.13 (3)
F6xv—K3—F5xv65.49 (4)K2—F6—K1xviii88.892 (10)
F7x—K3—F5xv68.77 (3)K2xxi—F6—K1xviii168.70 (4)
F3v—K3—F5xv133.69 (2)K1xix—F6—K1xviii100.48 (4)
F3xvi—K3—F5xv133.69 (2)Li2—F7—K3xvii153.04 (13)
Li1x—K3—F5xv145.44 (7)Li2—F7—K2xxviii92.28 (9)
F2xvii—K3—F5xv136.89 (3)K3xvii—F7—K2xxviii107.91 (4)
F5—Pr1—F3xviii96.53 (2)Li2—F7—K2xvii92.28 (9)
F5—Pr1—F3xix96.53 (2)K3xvii—F7—K2xvii107.91 (4)
F3xviii—Pr1—F3xix147.44 (4)K2xxviii—F7—K2xvii81.49 (4)
F5—Pr1—F2148.56 (4)Li2—F7—K2xi77.81 (7)
F3xviii—Pr1—F292.10 (2)K3xvii—F7—K2xi85.39 (3)
F3xix—Pr1—F292.10 (2)K2xxviii—F7—K2xi164.59 (4)
F5—Pr1—F1138.64 (4)K2xvii—F7—K2xi87.078 (7)
F3xviii—Pr1—F175.24 (2)Li2—F7—K2xxix77.81 (7)
F3xix—Pr1—F175.24 (2)K3xvii—F7—K2xxix85.39 (3)
F2—Pr1—F172.81 (4)K2xxviii—F7—K2xxix87.078 (7)
F5—Pr1—F8xx70.11 (4)K2xvii—F7—K2xxix164.59 (4)
F3xviii—Pr1—F8xx78.33 (2)K2xi—F7—K2xxix102.07 (4)
F3xix—Pr1—F8xx78.33 (2)Li2—F8—Pr1vi163.01 (13)
F2—Pr1—F8xx141.33 (4)Li2—F8—K1i90.34 (9)
F1—Pr1—F8xx68.53 (4)Pr1vi—F8—K1i102.45 (3)
F5—Pr1—F4xxi76.48 (3)Li2—F8—K1xxiii90.34 (9)
F3xviii—Pr1—F4xxi140.09 (3)Pr1vi—F8—K1xxiii102.45 (3)
F3xix—Pr1—F4xxi72.17 (3)K1i—F8—K1xxiii81.52 (3)
F2—Pr1—F4xxi77.55 (3)Li2—F8—K2xxix76.53 (7)
F1—Pr1—F4xxi134.52 (3)Pr1vi—F8—K2xxix92.84 (3)
F8xx—Pr1—F4xxi131.95 (3)K1i—F8—K2xxix162.49 (4)
F5—Pr1—F476.48 (3)K1xxiii—F8—K2xxix86.943 (11)
F3xviii—Pr1—F472.17 (3)Li2—F8—K2xi76.53 (7)
F3xix—Pr1—F4140.09 (3)Pr1vi—F8—K2xi92.84 (3)
F2—Pr1—F477.55 (3)K1i—F8—K2xi86.943 (11)
F1—Pr1—F4134.52 (3)K1xxiii—F8—K2xi162.49 (4)
F8xx—Pr1—F4131.95 (3)K2xxix—F8—K2xi100.92 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, y+1, −z+1/2; (iii) −x+1/2, −y+1, z−1/2; (iv) x, y+1, z; (v) −x+1/2, −y+1, z+1/2; (vi) x+1/2, y, −z+1/2; (vii) x−1/2, y+1, −z+3/2; (viii) −x+1/2, −y+2, z+1/2; (ix) −x+3/2, −y+1, z−1/2; (x) x−1/2, y, −z+3/2; (xi) −x+1, −y, −z+1; (xii) −x+1/2, −y, z+1/2; (xiii) −x+1/2, −y, z−1/2; (xiv) −x+1/2, y+1/2, z+1/2; (xv) x, y, z+1; (xvi) −x+1/2, y−1/2, z+1/2; (xvii) x+1/2, y, −z+3/2; (xviii) x, y−1, z; (xix) x, −y+3/2, z; (xx) x−1/2, y, −z+1/2; (xxi) x, −y+1/2, z; (xxii) x+1, y, z+1; (xxiii) −x+1, y−1/2, −z+1; (xxiv) x+1/2, −y+3/2, −z+3/2; (xxv) x+1/2, y−1, −z+3/2; (xxvi) −x+3/2, −y+1, z+1/2; (xxvii) −x+3/2, y−1/2, z+1/2; (xxviii) x+1/2, −y+1/2, −z+3/2; (xxix) −x+1, y+1/2, −z+1; (xxx) x−1, y, z−1; (xxxi) x−1/2, y−1, −z+1/2; (xxxii) x−1/2, −y+3/2, −z+1/2; (xxxiii) −x+1/2, y−1/2, z−1/2; (xxxiv) −x+1/2, −y+2, z−1/2; (xxxv) −x+1/2, y+1/2, z−1/2; (xxxvi) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2268).

References

  • Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Brown, I. D. (1992). Acta Cryst. B48, 553–572.
  • Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry - The Bond Valence Model. IUCr monographs on Crystallography 12. Oxford University Press.
  • Gagor, A. (2009). Acta Cryst. E65, i82. [PMC free article] [PubMed]
  • Hong, H. Y.-P. & McCollum, B. C. (1979). Mater. Res. Bull.14, 137–142.
  • Mattausch, H. J., Eger, R. & Simon, A. (1991). Z. Anorg. Allg. Chem.597, 145–150.
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Ryba-Romanowski, W., Solarz, P., Gusowski, M. & Dominiak-Dzik, G. (2007). Rad. Meas.42, 798–802.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography