PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1284.
Published online 2009 October 3. doi:  10.1107/S1600536809039580
PMCID: PMC2971199

Di-μ4-succinato-tetra­kis[aqua­phenanthrolinecopper(II)] tetra­nitrate tetra­hydrate

Abstract

In the title compound, [Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2O, the complete tetra­cation is generated by crystallographic inversion symmetry. Both unique Cu2+ ions are coordinated by an N,N′-bidentate phenanthroline mol­ecule, two O-monodentate bis-bridging succinate dianions and a water mol­ecule, resulting in distorted CuN2O3 square-based pyramidal geometries for the metal ions, with the water mol­ecule occupying the apical site. In the crystal, the components are linked by O—H(...)O hydrogen bonds and aromatic π–π stacking inter­actions [minimum centroid–centroid separation = 3.537 (2) Å].

Related literature

For related structures, see: McCann et al. (1998 [triangle]); Padmanabhan et al. (2005 [triangle]); Ghosh et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1284-scheme1.jpg

Experimental

Crystal data

  • [Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2O
  • M r = 1599.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1284-efi1.jpg
  • a = 8.9180 (1) Å
  • b = 34.1090 (2) Å
  • c = 10.3620 (2) Å
  • β = 96.031 (1)°
  • V = 3134.51 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.44 mm−1
  • T = 293 K
  • 0.20 × 0.19 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD diffractometer
  • Absorption correction: none
  • 23089 measured reflections
  • 8980 independent reflections
  • 7772 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.191
  • S = 1.05
  • 8980 reflections
  • 463 parameters
  • 101 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 2.88 e Å−3
  • Δρmin = −1.59 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039580/hb5112sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039580/hb5112Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Royal Golden Jubilee PhD Program (RGJ) for financial support.

supplementary crystallographic information

Comment

The moleculular structure of the title compound, (I), consists of a tetranuclear [Cu4(phen)4(suc)2(H2O)4].4+ species and uncoordinated water molecules and nitrate anions. Each Cu(II) ion (Table 1) exhibits a distorted square pyramidal coordination geometry through one apical water oxygen atom, two phen N atoms and two carboxylate O atoms from two succinate dianions which act as bis bridging ligands toward the Cu1 and Cu2 atoms (Fig. 1). The Cu1···Cu2 distance is 3.0318 (4) Å. The succinate ions also bridge two Cu(II) ions (Cu1' and Cu2'). The Cu1 and Cu2' distance separated by the bridging succinate anion is 6.396 Å. The face-to-face π-π interactions between the phenanthroline ring enhance the stability of the structure.

The apical water molecules form hydrogen bonds with nitrate O atoms (O···O distances of 2.810–2.920 Å) and uncoordinated water O atoms (O···O distances of 2.709–2.768Å): Table 2.

Experimental

The solvothermal systhesis was carried out in telflon-lined stainless steel autoclave. A mixture of Cu(NO3)2.2H2O, phenantholine and succinic acid (mole ratio 1:1:1) in (H2O)/MeOH (2:1) was heated at 423 K for 72 h. Green slabs of (I) in a green solution were obtained.

Refinement

All the H atoms were located in a difference map and their positions and Uiso(H) value were freely refined.

Figures

Fig. 1.
The molecular structure of (I), with 50% probability displacement ellipsoids for non-H atoms.

Crystal data

[Cu4(C4H4O4)2(C12H8N2)4(H2O)4](NO3)4·4H2OZ = 2
Mr = 1599.29F(000) = 1632
Monoclinic, P21/cDx = 1.694 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9180 (1) ÅCell parameters from 23295 reflections
b = 34.1090 (2) ŵ = 1.44 mm1
c = 10.3620 (2) ÅT = 293 K
β = 96.031 (1)°Slab, green
V = 3134.51 (7) Å30.20 × 0.19 × 0.10 mm

Data collection

Bruker SMART 1K CCD diffractometer7772 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
graphiteθmax = 30.5°, θmin = 1.2°
ω scansh = −12→9
23089 measured reflectionsk = −37→48
8980 independent reflectionsl = −13→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.1023P)2 + 8.0138P] where P = (Fo2 + 2Fc2)/3
8980 reflections(Δ/σ)max < 0.001
463 parametersΔρmax = 2.88 e Å3
101 restraintsΔρmin = −1.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.28697 (5)0.045902 (12)0.25937 (4)0.02773 (12)
Cu20.45414 (5)0.092420 (12)0.07025 (4)0.02759 (12)
O10.5954 (3)0.05491 (8)0.1565 (3)0.0403 (6)
O20.4661 (3)0.01290 (8)0.2689 (3)0.0384 (6)
O30.6118 (4)0.11127 (12)−0.0618 (3)0.0431 (7)
O40.1350 (5)0.01289 (11)0.3799 (4)0.0577 (9)
O50.2091 (3)0.02148 (9)0.0939 (3)0.0366 (6)
O60.3553 (4)0.05135 (8)−0.0390 (3)0.0396 (6)
O7−0.1911 (12)0.2391 (4)0.0691 (10)0.191 (2)
O8−0.1382 (12)0.2708 (4)0.2187 (10)0.191 (2)
O9−0.3494 (12)0.2700 (4)0.1619 (9)0.191 (2)
O10−0.0018 (6)0.06202 (15)0.6390 (5)0.0804 (7)
O11−0.1232 (6)0.11331 (15)0.5928 (5)0.0804 (7)
O12−0.0996 (6)0.07141 (15)0.4439 (5)0.0804 (7)
O130.8466 (5)0.06449 (13)−0.1270 (4)0.0529 (8)
O140.6181 (10)0.18964 (17)−0.1023 (7)0.105 (2)
N10.1424 (3)0.09146 (9)0.2426 (3)0.0281 (5)
N20.3661 (3)0.07455 (9)0.4221 (3)0.0299 (6)
N30.2987 (3)0.13232 (9)−0.0008 (3)0.0313 (6)
N40.5046 (3)0.13445 (8)0.2033 (3)0.0285 (5)
N5−0.0754 (7)0.08168 (19)0.5574 (6)0.0804 (7)
N6−0.2256 (16)0.2581 (4)0.1483 (12)0.191 (2)
C10.0277 (4)0.09854 (12)0.1527 (4)0.0348 (7)
H10.00700.08060.08560.042*
C2−0.0628 (5)0.13195 (14)0.1556 (5)0.0442 (9)
H2−0.14220.13590.09120.053*
C3−0.0343 (5)0.15882 (13)0.2536 (5)0.0441 (9)
H3−0.09190.18150.25470.053*
C40.0829 (4)0.15163 (11)0.3524 (4)0.0357 (7)
C50.1192 (6)0.17666 (13)0.4627 (5)0.0502 (11)
H50.06310.19930.47110.060*
C60.2326 (6)0.16796 (14)0.5539 (4)0.0524 (11)
H60.25400.18490.62370.063*
C70.3218 (5)0.13296 (12)0.5464 (4)0.0396 (8)
C80.4391 (6)0.12140 (15)0.6398 (4)0.0508 (11)
H80.46560.13690.71240.061*
C90.5138 (6)0.08717 (15)0.6231 (4)0.0507 (11)
H90.59030.07900.68520.061*
C100.4754 (5)0.06441 (13)0.5126 (4)0.0404 (8)
H100.52840.04130.50210.049*
C110.2887 (4)0.10818 (11)0.4393 (3)0.0302 (6)
C120.1680 (4)0.11755 (10)0.3420 (3)0.0287 (6)
C130.1976 (5)0.12984 (14)−0.1039 (4)0.0409 (8)
H130.19500.1075−0.15550.049*
C140.0944 (5)0.16024 (16)−0.1369 (5)0.0503 (11)
H140.02560.1580−0.21050.060*
C150.0946 (5)0.19314 (14)−0.0612 (5)0.0495 (10)
H150.02500.2131−0.08180.059*
C160.2019 (5)0.19638 (12)0.0489 (4)0.0401 (8)
C170.2115 (6)0.22905 (12)0.1378 (5)0.0513 (11)
H170.14250.24950.12420.062*
C180.3176 (6)0.23065 (12)0.2398 (6)0.0529 (11)
H180.32240.25240.29410.063*
C190.4237 (5)0.19925 (11)0.2661 (4)0.0385 (8)
C200.5367 (6)0.19841 (13)0.3722 (5)0.0478 (10)
H200.54820.21940.42950.057*
C210.6289 (5)0.16652 (14)0.3902 (4)0.0446 (9)
H210.70460.16600.45910.053*
C220.6097 (4)0.13465 (12)0.3049 (4)0.0346 (7)
H220.67230.11290.31950.042*
C230.4138 (4)0.16638 (10)0.1835 (4)0.0300 (6)
C240.3028 (4)0.16508 (10)0.0740 (3)0.0303 (6)
C250.5830 (4)0.02380 (10)0.2196 (3)0.0288 (6)
C260.7229 (4)−0.00119 (11)0.2433 (3)0.0307 (7)
C270.2562 (4)0.02685 (10)−0.0151 (3)0.0276 (6)
C280.1862 (4)0.00277 (12)−0.1284 (4)0.0319 (7)
H13D0.865 (7)0.0669 (19)−0.191 (7)0.054 (19)*
H13C0.840 (8)0.042 (2)−0.128 (7)0.07 (2)*
H40.624 (7)0.132 (2)−0.075 (6)0.055 (18)*
H160.671 (7)0.0999 (18)−0.081 (6)0.047 (16)*
H240.101 (10)−0.0089 (12)0.393 (9)0.11 (3)*
H230.080 (6)0.0256 (17)0.422 (5)0.065 (19)*
H28B0.173 (7)−0.0210 (18)−0.092 (6)0.057 (16)*
H26B0.704 (7)−0.0255 (19)0.270 (6)0.058 (16)*
H26A0.773 (6)0.0080 (14)0.316 (5)0.039 (12)*
H28A0.098 (7)0.0156 (19)−0.140 (6)0.065 (18)*
H14B0.669 (8)0.200 (2)−0.155 (6)0.10 (3)*
H14C0.679 (10)0.198 (3)−0.044 (8)0.09 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0279 (2)0.0305 (2)0.0247 (2)0.00133 (15)0.00241 (15)−0.00501 (15)
Cu20.0291 (2)0.0243 (2)0.0287 (2)0.00061 (14)−0.00019 (15)−0.00122 (14)
O10.0387 (14)0.0304 (13)0.0505 (16)0.0070 (11)−0.0019 (12)0.0056 (11)
O20.0359 (13)0.0400 (14)0.0402 (14)0.0100 (11)0.0079 (11)0.0007 (11)
O30.0407 (16)0.0469 (19)0.0435 (16)0.0031 (14)0.0136 (13)0.0056 (14)
O40.072 (2)0.0434 (18)0.063 (2)−0.0140 (17)0.0327 (19)−0.0013 (16)
O50.0366 (13)0.0438 (15)0.0298 (12)−0.0025 (11)0.0053 (10)−0.0122 (11)
O60.0477 (16)0.0338 (13)0.0368 (14)−0.0110 (11)0.0018 (12)−0.0077 (11)
O70.146 (4)0.276 (7)0.139 (4)0.073 (4)−0.043 (3)−0.078 (4)
O80.146 (4)0.276 (7)0.139 (4)0.073 (4)−0.043 (3)−0.078 (4)
O90.146 (4)0.276 (7)0.139 (4)0.073 (4)−0.043 (3)−0.078 (4)
O100.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)−0.0016 (13)−0.0012 (13)
O110.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)−0.0016 (13)−0.0012 (13)
O120.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)−0.0016 (13)−0.0012 (13)
O130.062 (2)0.051 (2)0.048 (2)0.0071 (17)0.0155 (17)−0.0016 (16)
O140.169 (7)0.059 (3)0.089 (4)−0.035 (4)0.023 (5)0.007 (3)
N10.0273 (13)0.0322 (14)0.0246 (12)−0.0023 (10)0.0023 (10)−0.0017 (10)
N20.0325 (14)0.0333 (14)0.0235 (12)−0.0018 (11)0.0004 (11)−0.0009 (11)
N30.0293 (14)0.0331 (14)0.0307 (14)0.0010 (11)−0.0004 (11)0.0028 (11)
N40.0275 (13)0.0258 (13)0.0316 (14)0.0000 (10)0.0008 (11)−0.0001 (10)
N50.0886 (18)0.0729 (15)0.0775 (16)0.0048 (13)−0.0016 (13)−0.0012 (13)
N60.146 (4)0.276 (7)0.139 (4)0.073 (4)−0.043 (3)−0.078 (4)
C10.0276 (16)0.0421 (19)0.0333 (17)−0.0040 (14)−0.0037 (13)−0.0033 (14)
C20.0297 (18)0.053 (2)0.048 (2)0.0044 (16)−0.0056 (16)0.0041 (19)
C30.0336 (18)0.038 (2)0.060 (3)0.0081 (15)0.0050 (17)0.0029 (18)
C40.0380 (18)0.0296 (16)0.0399 (19)0.0033 (14)0.0060 (15)−0.0033 (14)
C50.064 (3)0.0328 (19)0.055 (3)0.0055 (19)0.010 (2)−0.0127 (18)
C60.076 (3)0.041 (2)0.040 (2)0.001 (2)0.004 (2)−0.0183 (18)
C70.052 (2)0.0382 (19)0.0274 (16)−0.0061 (16)0.0000 (15)−0.0065 (14)
C80.067 (3)0.055 (3)0.0281 (18)−0.009 (2)−0.0080 (18)−0.0079 (17)
C90.057 (3)0.060 (3)0.0311 (19)−0.001 (2)−0.0140 (18)0.0008 (18)
C100.044 (2)0.045 (2)0.0307 (17)0.0021 (16)−0.0045 (15)0.0051 (15)
C110.0355 (17)0.0324 (16)0.0225 (14)−0.0036 (13)0.0025 (12)−0.0024 (12)
C120.0289 (15)0.0295 (15)0.0279 (15)−0.0003 (12)0.0043 (12)−0.0034 (12)
C130.0392 (19)0.051 (2)0.0314 (17)0.0005 (17)−0.0034 (15)0.0014 (16)
C140.043 (2)0.065 (3)0.040 (2)0.004 (2)−0.0099 (17)0.010 (2)
C150.044 (2)0.048 (2)0.054 (3)0.0117 (19)−0.0056 (19)0.015 (2)
C160.0401 (19)0.0319 (18)0.048 (2)0.0054 (15)0.0032 (16)0.0113 (16)
C170.056 (3)0.0281 (18)0.068 (3)0.0121 (17)0.001 (2)0.0058 (19)
C180.062 (3)0.0242 (17)0.072 (3)0.0041 (17)0.004 (2)−0.0074 (19)
C190.042 (2)0.0251 (16)0.048 (2)−0.0041 (14)0.0037 (16)−0.0028 (15)
C200.053 (2)0.040 (2)0.049 (2)−0.0090 (18)−0.0010 (19)−0.0123 (18)
C210.041 (2)0.050 (2)0.040 (2)−0.0082 (17)−0.0066 (16)−0.0077 (17)
C220.0298 (16)0.0386 (18)0.0343 (17)−0.0006 (13)−0.0018 (13)0.0008 (14)
C230.0308 (16)0.0243 (14)0.0346 (16)−0.0019 (12)0.0018 (13)0.0015 (12)
C240.0302 (15)0.0274 (15)0.0335 (16)0.0011 (12)0.0044 (13)0.0052 (12)
C250.0325 (16)0.0280 (15)0.0248 (14)0.0066 (12)−0.0026 (12)−0.0060 (11)
C260.0326 (16)0.0332 (17)0.0250 (15)0.0076 (13)−0.0036 (12)−0.0022 (13)
C270.0254 (14)0.0275 (15)0.0287 (15)0.0053 (11)−0.0021 (11)−0.0070 (12)
C280.0272 (15)0.0353 (17)0.0320 (16)0.0006 (13)−0.0024 (12)−0.0101 (14)

Geometric parameters (Å, °)

Cu1—O21.948 (3)C4—C121.398 (5)
Cu1—O51.966 (3)C4—C51.437 (6)
Cu1—N22.011 (3)C5—C61.342 (7)
Cu1—N12.015 (3)C5—H50.9300
Cu1—O42.240 (3)C6—C71.441 (6)
Cu1—Cu23.0322 (6)C6—H60.9300
Cu2—O11.946 (3)C7—C111.401 (5)
Cu2—O61.952 (3)C7—C81.405 (6)
Cu2—N42.007 (3)C8—C91.364 (7)
Cu2—N32.025 (3)C8—H80.9300
Cu2—O32.160 (3)C9—C101.396 (6)
O1—C251.258 (5)C9—H90.9300
O2—C251.264 (5)C10—H100.9300
O3—H40.73 (7)C11—C121.432 (5)
O3—H160.70 (6)C13—C141.405 (6)
O4—H240.82 (5)C13—H130.9300
O4—H230.82 (6)C14—C151.369 (7)
O5—C271.259 (4)C14—H140.9300
O6—C271.260 (5)C15—C161.415 (6)
O7—N61.114 (14)C15—H150.9300
O8—N61.099 (14)C16—C241.403 (5)
O9—N61.199 (14)C16—C171.443 (7)
O10—N51.216 (8)C17—C181.344 (7)
O11—N51.231 (8)C17—H170.9300
O12—N51.224 (8)C18—C191.436 (6)
O13—H13D0.70 (7)C18—H180.9300
O13—H13C0.75 (8)C19—C231.407 (5)
O14—H14B0.83 (7)C19—C201.411 (6)
O14—H14C0.82 (8)C20—C211.364 (7)
N1—C11.331 (4)C20—H200.9300
N1—C121.362 (4)C21—C221.400 (6)
N2—C101.326 (5)C21—H210.9300
N2—C111.360 (5)C22—H220.9300
N3—C131.327 (5)C23—C241.426 (5)
N3—C241.358 (5)C25—C261.510 (5)
N4—C221.334 (5)C26—C28i1.510 (5)
N4—C231.359 (4)C26—H26B0.90 (6)
C1—C21.399 (6)C26—H26A0.89 (5)
C1—H10.9300C27—C281.513 (4)
C2—C31.371 (7)C28—C26i1.510 (5)
C2—H20.9300C28—H28B0.91 (6)
C3—C41.406 (6)C28—H28A0.90 (7)
C3—H30.9300
O2—Cu1—O590.69 (12)C5—C6—C7121.6 (4)
O2—Cu1—N291.42 (12)C5—C6—H6119.2
O5—Cu1—N2175.95 (12)C7—C6—H6119.2
O2—Cu1—N1164.53 (12)C11—C7—C8117.1 (4)
O5—Cu1—N195.00 (12)C11—C7—C6118.1 (4)
N2—Cu1—N182.10 (12)C8—C7—C6124.8 (4)
O2—Cu1—O4102.84 (14)C9—C8—C7119.4 (4)
O5—Cu1—O495.40 (14)C9—C8—H8120.3
N2—Cu1—O487.49 (14)C7—C8—H8120.3
N1—Cu1—O490.95 (14)C8—C9—C10120.0 (4)
O2—Cu1—Cu283.04 (9)C8—C9—H9120.0
O5—Cu1—Cu279.10 (9)C10—C9—H9120.0
N2—Cu1—Cu297.73 (9)N2—C10—C9122.3 (4)
N1—Cu1—Cu283.93 (8)N2—C10—H10118.9
O4—Cu1—Cu2172.09 (12)C9—C10—H10118.9
O1—Cu2—O691.46 (13)N2—C11—C7123.0 (3)
O1—Cu2—N493.81 (12)N2—C11—C12116.7 (3)
O6—Cu2—N4164.98 (13)C7—C11—C12120.2 (3)
O1—Cu2—N3173.84 (13)N1—C12—C4123.5 (3)
O6—Cu2—N391.23 (13)N1—C12—C11116.2 (3)
N4—Cu2—N382.25 (12)C4—C12—C11120.3 (3)
O1—Cu2—O393.07 (14)N3—C13—C14121.4 (4)
O6—Cu2—O397.50 (14)N3—C13—H13119.3
N4—Cu2—O396.25 (14)C14—C13—H13119.3
N3—Cu2—O392.07 (14)C15—C14—C13120.3 (4)
O1—Cu2—Cu172.40 (9)C15—C14—H14119.9
O6—Cu2—Cu177.09 (9)C13—C14—H14119.9
N4—Cu2—Cu191.12 (9)C14—C15—C16119.1 (4)
N3—Cu2—Cu1102.83 (9)C14—C15—H15120.5
O3—Cu2—Cu1164.16 (11)C16—C15—H15120.5
C25—O1—Cu2134.9 (3)C24—C16—C15117.2 (4)
C25—O2—Cu1121.1 (2)C24—C16—C17118.4 (4)
Cu2—O3—H4122 (5)C15—C16—C17124.4 (4)
Cu2—O3—H16125 (5)C18—C17—C16121.5 (4)
H4—O3—H16110 (7)C18—C17—H17119.2
Cu1—O4—H24144 (7)C16—C17—H17119.2
Cu1—O4—H23118 (5)C17—C18—C19121.0 (4)
H24—O4—H2398 (7)C17—C18—H18119.5
C27—O5—Cu1126.8 (2)C19—C18—H18119.5
C27—O6—Cu2130.2 (2)C23—C19—C20116.8 (4)
H13D—O13—H13C97 (7)C23—C19—C18118.7 (4)
H14B—O14—H14C88 (8)C20—C19—C18124.4 (4)
C1—N1—C12117.8 (3)C21—C20—C19119.6 (4)
C1—N1—Cu1129.7 (3)C21—C20—H20120.2
C12—N1—Cu1112.5 (2)C19—C20—H20120.2
C10—N2—C11118.2 (3)C20—C21—C22120.0 (4)
C10—N2—Cu1129.3 (3)C20—C21—H21120.0
C11—N2—Cu1112.4 (2)C22—C21—H21120.0
C13—N3—C24119.2 (3)N4—C22—C21122.1 (4)
C13—N3—Cu2129.1 (3)N4—C22—H22119.0
C24—N3—Cu2111.7 (2)C21—C22—H22119.0
C22—N4—C23118.2 (3)N4—C23—C19123.3 (3)
C22—N4—Cu2129.3 (3)N4—C23—C24116.6 (3)
C23—N4—Cu2112.4 (2)C19—C23—C24120.1 (3)
O10—N5—O12122.5 (7)N3—C24—C16122.8 (3)
O10—N5—O11117.0 (6)N3—C24—C23117.0 (3)
O12—N5—O11120.4 (6)C16—C24—C23120.1 (3)
O8—N6—O7119.1 (16)O1—C25—O2125.4 (3)
O8—N6—O9112.7 (14)O1—C25—C26116.4 (3)
O7—N6—O9127.8 (14)O2—C25—C26118.1 (3)
N1—C1—C2122.4 (4)C25—C26—C28i113.2 (3)
N1—C1—H1118.8C25—C26—H26B113 (4)
C2—C1—H1118.8C28i—C26—H26B110 (4)
C3—C2—C1119.9 (4)C25—C26—H26A106 (3)
C3—C2—H2120.1C28i—C26—H26A114 (3)
C1—C2—H2120.1H26B—C26—H26A99 (5)
C2—C3—C4119.2 (4)O5—C27—O6125.5 (3)
C2—C3—H3120.4O5—C27—C28117.9 (3)
C4—C3—H3120.4O6—C27—C28116.6 (3)
C12—C4—C3117.2 (4)C26i—C28—C27114.8 (3)
C12—C4—C5118.5 (4)C26i—C28—H28B114 (4)
C3—C4—C5124.3 (4)C27—C28—H28B103 (4)
C6—C5—C4121.3 (4)C26i—C28—H28A116 (4)
C6—C5—H5119.4C27—C28—H28A97 (4)
C4—C5—H5119.4H28B—C28—H28A110 (5)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H4···O140.73 (7)1.99 (7)2.707 (7)169 (7)
O3—H16···O130.70 (6)2.07 (6)2.772 (6)177 (9)
O4—H23···O120.82 (6)2.27 (6)3.015 (7)153 (5)
O4—H24···O10ii0.82 (5)2.03 (6)2.816 (6)161 (8)
O13—H13C···O5i0.77 (7)2.24 (7)3.000 (5)167 (7)
O13—H13D···O10iii0.71 (7)2.23 (7)2.899 (7)159 (8)
O14—H14B···O9iv0.83 (7)2.15 (6)2.846 (13)142 (6)
O14—H14C···O7v0.82 (9)2.10 (9)2.874 (14)158 (10)

Symmetry codes: (ii) −x, −y, −z+1; (i) −x+1, −y, −z; (iii) x+1, y, z−1; (iv) x+1, −y+1/2, z−1/2; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5112).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ghosh, A. K., Ghoshal, D., Zangrando, E., Ribas, J. & Chaudhuri, N. R. (2007). Inorg. Chem.46, 3057–3071. [PubMed]
  • McCann, S., McCann, M., Casey, R. M. T., Jackman, M., Devereux, M., McKee, V., & (1998). Inorg. Chim. Acta, 279, 24–29.
  • Padmanabhan, M., Kumary, S. M., Huang, X. & Li, J. (2005). Inorg. Chim. Acta, 358, 3537–3544.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography