PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1300–m1301.
Published online 2009 October 3. doi:  10.1107/S1600536809038422
PMCID: PMC2971197

cis-Aqua­chloridobis(1,10-phenanthroline-κ2 N,N′)cobalt(II) chloride 2.5-hydrate

Abstract

In the title complex, [CoCl(C12H8N2)2(H2O)]Cl·2.5H2O, the CoII ion is coordinated by four N atoms of two bis-chelating 1,10-phenanthroline (phen) ligands, one water mol­ecule and a chloride ligand in a distorted octa­hedral environment. The dihedral angle between the two phen ligands is 84.21 (3)°. In the crystal structure, complex mol­ecules and chloride ions are linked into centrosymmetric four-component clusters by inter­molecular O—H(...)Cl hydrogen bonds. Of the 2.5 solvent water mol­ecules in the asymmetric unit, two were refined as disordered over two sites with fixed occupancies of ratios 0.50:0.50 and 0.60:0.40, while another was refined with half occupancy.

Related literature

1,10-Phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions, see: Nobufumi (1969 [triangle]). Metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone, see: Weijnen et al. (1992 [triangle]). For some examples of the applications of substituted phenanthroline compounds, see Garuti et al. (1989 [triangle]). For the crystal structures of related cobalt complexes of 1,10-phenanthroline, see: Sun & Feng (2006 [triangle]); Zhong et al. (2006 [triangle]). For the crystal structure of the title complex with thio­acetamide solvent rather than water, see: Zhong et al. (2007 [triangle]). For the use of metal complexes of 1,10-phenanthroline in developing new diagnostic and therapeutic agents that can recognize and cleave DNA, see: Arai et al. (2005 [triangle]); Müller et al. (1987 [triangle]). Oxovanadium complexes of dimethyl-substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer, see: Rama Krishna et al. (2000 [triangle]). Weijnen et al. (1992 [triangle]); Nobufumi (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1300-scheme1.jpg

Experimental

Crystal data

  • [CoCl(C12H8N2)2(H2O)]Cl·2.5H2O
  • M r = 553.29
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1300-efi1.jpg
  • a = 9.6597 (3) Å
  • b = 11.4386 (3) Å
  • c = 12.9886 (4) Å
  • α = 64.224 (1)°
  • β = 86.377 (2)°
  • γ = 78.303 (1)°
  • V = 1265.01 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.93 mm−1
  • T = 293 K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.722, T max = 0.812
  • 34458 measured reflections
  • 9683 independent reflections
  • 7380 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.138
  • S = 1.10
  • 9683 reflections
  • 343 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038422/lh2895sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038422/lh2895Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are thankful to Rev. Fr Dr A. Albert Muthumali, S.J., Principal, Loyola College (Autonomous), Chennai-34, India, for providing the necessary facilities and the Head, SAIF, IIT Madras, Chennai-36, India, for recording the X-ray data.

supplementary crystallographic information

Comment

1,10-phenanthroline is a versatile ligand capable of forming highly stable complexes with transition metal ions (Nobufumi, 1969). Complexes of 1,10-phenanthroline are frequently employed for catalytic reactions. For example metal complexes functionalized with 1,10-phenanthrolines have been used as catalyst for the enantio selective hydrolysis of N-protected amino acid esters and in enantio selective reduction of acetophenone (Weijnen, et al. 1992). The synthesis of some phenanthroline -2,9-disubstituted compounds along with their in vitro antimicrobial properties against gram-positive and gram – negative bacteria and fungi have been reported (Garuti et al.,1989). Metal complexes of 1,10-phenanthroline have been found to be attractive species for developing new diagnostic and therapeutic agents that can recognize and cleave DNA (Müller et al., 1987, Arai et al., 2005). Experimental evidence has been provided to prove oxovanadium complexes of dimethyl substituted phenanthroline will induce apoptosis in human cancer cells, and may be useful for the treatment of cancer (Rama Krishna, et al. 2000).

The molecular structure of the cation is shown in Fig. 1. The asymmetric unit contains one complex cation a chloride anion and 2.5 molecules of solvent water. The CoII ion is coordinated in a distorted octahedral environment by four nitrogen atoms of two 1,10-phenanthroline ligands, a chloride ion, and a water molecule. The dihedral angle between the two phen ligands is 84.21 (3) °. In the crystal structure, complex molecules and chloride ions are linked into centrosymmetric four component clusters by intermolecular O—H···Cl hydrogen bonds. .

Experimental

Cobalt(II) chloride hexahydrate was thoroughly grinded and exposed to microwave radiation for 30s. The dehydrated cobalt(II) chloride (0.05 mol) was dissolved in 100 ml of acetone. 1,10-phenanathroline monohydrate (0.1 mol) was dissolved in 100 ml of acetone. The solution of 1,10-phenanathroline was slowly added with constant stirring to the solution of cobalt(II) chloride and allowed to react for two hours. After completion of the reaction, a reddish orange coloured solution was formed. The stirring was stopped and the reaction mixture was allowed to settle for one hour. The reddish orange coloured product was filtered and washed with acetone and dried over a desicator. Single crystals were obtained by slow evaporation of a methanolic solution of the title complex.

Refinement

H atoms bonded to C atoms were placed in calculated position and included in the refinement in a riding-model approximation with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C). The H atoms bonded to the coordinated water molecule were refined with isotropic displacement parameters. Of the 2.5 solvent water molecules is the asymmetric unit two were refnied as disordered over two sites with fixed occupancies of ration 0.5:0.5 and 0.60:0.40 while another was refined as a partial occupancy of 0.50. The H atoms of the solvent water molecules were not located nor included in the refinement but were included in the molecular formula.

Figures

Fig. 1.
FMolecular structure of the cation of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal structure showing O—H···Cl hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonds have been ommited. The solvent water molecules are not shown.

Crystal data

[CoCl(C12H8N2)2(H2O)]Cl·2.5H2OZ = 2
Mr = 553.29F(000) = 576
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6597 (3) ÅCell parameters from 7839 reflections
b = 11.4386 (3) Åθ = 2.7–32.5°
c = 12.9886 (4) ŵ = 0.93 mm1
α = 64.224 (1)°T = 293 K
β = 86.377 (2)°Plate, red
γ = 78.303 (1)°0.30 × 0.30 × 0.20 mm
V = 1265.01 (6) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer9683 independent reflections
Radiation source: fine-focus sealed tube7380 reflections with I > 2σ(I)
graphiteRint = 0.028
ω and [var phi] scansθmax = 33.4°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −14→14
Tmin = 0.722, Tmax = 0.812k = −17→17
34458 measured reflectionsl = −19→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.138w = 1/[σ2(Fo2) + (0.0685P)2 + 0.4443P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
9683 reflectionsΔρmax = 0.72 e Å3
343 parametersΔρmin = −0.42 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.6979 (2)0.9429 (3)0.1406 (2)0.0498 (5)
H10.78470.93960.10560.060*
C20.6035 (3)0.8711 (3)0.1298 (3)0.0634 (7)
H20.62800.82050.08910.076*
C30.4749 (3)0.8757 (3)0.1794 (3)0.0593 (6)
H30.41020.82950.17180.071*
C40.4415 (2)0.9510 (2)0.24212 (18)0.0413 (4)
C50.3106 (2)0.9586 (2)0.3001 (2)0.0485 (5)
H50.24200.91550.29360.058*
C60.2858 (2)1.0266 (2)0.36317 (19)0.0444 (5)
H60.20151.02760.40190.053*
C70.38682 (18)1.09809 (18)0.37217 (15)0.0355 (4)
C80.3665 (2)1.1707 (2)0.43717 (17)0.0426 (4)
H80.28441.17370.47820.051*
C90.4674 (2)1.2367 (2)0.44004 (18)0.0436 (4)
H90.45451.28610.48220.052*
C100.5913 (2)1.22959 (19)0.37879 (17)0.0377 (4)
H100.65941.27550.38100.045*
C110.51474 (17)1.09520 (16)0.31430 (14)0.0300 (3)
C120.54289 (17)1.01907 (18)0.24953 (15)0.0319 (3)
C130.9632 (2)1.2764 (2)0.31592 (19)0.0430 (4)
H130.98381.19550.38000.052*
C141.0192 (3)1.3822 (3)0.3113 (3)0.0567 (6)
H141.07591.37110.37130.068*
C150.9900 (3)1.5015 (2)0.2182 (3)0.0565 (6)
H151.02791.57200.21370.068*
C160.9028 (2)1.5171 (2)0.1295 (2)0.0449 (5)
C170.8652 (3)1.6387 (2)0.0285 (3)0.0590 (7)
H170.90021.71230.02010.071*
C180.7806 (3)1.6483 (2)−0.0541 (2)0.0606 (7)
H180.75841.7283−0.11880.073*
C190.7241 (2)1.5380 (2)−0.04446 (18)0.0460 (5)
C200.6344 (3)1.5425 (3)−0.1270 (2)0.0594 (7)
H200.60941.6204−0.19330.071*
C210.5838 (3)1.4333 (3)−0.1105 (2)0.0579 (6)
H210.52281.4362−0.16440.069*
C220.6249 (2)1.3163 (2)−0.01098 (18)0.0444 (4)
H220.59131.2415−0.00090.053*
C230.75899 (18)1.41697 (17)0.05320 (15)0.0334 (3)
C240.85017 (18)1.40623 (17)0.14098 (16)0.0334 (3)
O2'0.6535 (14)0.3986 (11)0.6280 (11)0.195 (6)0.40
O20.3871 (11)0.4705 (7)0.6502 (7)0.190 (4)0.60
O30.9469 (11)0.3167 (6)0.6132 (6)0.125 (3)0.50
O3'1.0826 (15)0.2976 (8)0.6422 (8)0.180 (5)0.50
O41.1914 (12)0.4501 (10)0.5278 (7)0.171 (4)0.50
N10.66940 (16)1.01569 (16)0.19855 (14)0.0350 (3)
N20.61525 (15)1.16040 (14)0.31806 (12)0.0299 (3)
N30.88180 (15)1.28706 (15)0.23231 (13)0.0319 (3)
N40.70912 (16)1.30782 (15)0.06895 (13)0.0329 (3)
O10.95884 (15)1.10031 (14)0.11464 (12)0.0382 (3)
Cl10.92546 (5)0.95686 (5)0.38472 (4)0.03919 (11)
Cl20.88362 (6)0.18004 (6)0.86264 (5)0.04968 (13)
Co10.79827 (2)1.13428 (2)0.222016 (18)0.02766 (7)
H1A1.006 (3)1.0167 (13)0.138 (2)0.062 (8)*
H1B0.930 (3)1.129 (3)0.0417 (11)0.058 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0438 (11)0.0636 (14)0.0639 (14)−0.0216 (10)0.0158 (10)−0.0447 (12)
C20.0605 (14)0.0834 (18)0.0834 (19)−0.0336 (13)0.0197 (13)−0.0640 (17)
C30.0521 (13)0.0754 (17)0.0757 (17)−0.0336 (12)0.0103 (12)−0.0476 (15)
C40.0346 (9)0.0504 (11)0.0434 (10)−0.0180 (8)0.0024 (7)−0.0203 (9)
C50.0328 (9)0.0598 (13)0.0524 (12)−0.0216 (9)0.0032 (8)−0.0187 (10)
C60.0258 (8)0.0540 (11)0.0452 (11)−0.0110 (7)0.0057 (7)−0.0134 (9)
C70.0270 (7)0.0379 (8)0.0308 (8)−0.0038 (6)0.0030 (6)−0.0062 (7)
C80.0337 (9)0.0462 (10)0.0366 (9)−0.0005 (7)0.0083 (7)−0.0114 (8)
C90.0455 (10)0.0461 (10)0.0385 (10)−0.0022 (8)0.0072 (8)−0.0212 (8)
C100.0383 (9)0.0393 (9)0.0371 (9)−0.0065 (7)0.0037 (7)−0.0188 (7)
C110.0253 (7)0.0319 (7)0.0263 (7)−0.0047 (5)0.0001 (5)−0.0069 (6)
C120.0270 (7)0.0362 (8)0.0313 (8)−0.0094 (6)0.0004 (6)−0.0119 (6)
C130.0411 (10)0.0462 (10)0.0478 (11)−0.0080 (8)−0.0065 (8)−0.0251 (9)
C140.0518 (12)0.0613 (14)0.0757 (17)−0.0144 (11)−0.0087 (11)−0.0440 (13)
C150.0506 (12)0.0496 (12)0.0876 (18)−0.0215 (10)0.0092 (12)−0.0424 (13)
C160.0410 (10)0.0345 (9)0.0619 (13)−0.0133 (7)0.0157 (9)−0.0226 (9)
C170.0592 (14)0.0306 (9)0.0793 (18)−0.0159 (9)0.0251 (13)−0.0165 (10)
C180.0700 (16)0.0306 (9)0.0575 (14)−0.0056 (9)0.0199 (12)−0.0016 (9)
C190.0458 (10)0.0358 (9)0.0371 (10)0.0030 (8)0.0101 (8)−0.0040 (7)
C200.0609 (14)0.0527 (13)0.0353 (10)0.0138 (11)−0.0021 (10)−0.0023 (9)
C210.0543 (13)0.0698 (16)0.0361 (10)0.0118 (12)−0.0160 (9)−0.0184 (11)
C220.0410 (10)0.0521 (11)0.0378 (10)0.0014 (8)−0.0075 (8)−0.0206 (9)
C230.0313 (8)0.0306 (7)0.0312 (8)−0.0017 (6)0.0070 (6)−0.0094 (6)
C240.0306 (7)0.0305 (7)0.0386 (9)−0.0075 (6)0.0086 (6)−0.0149 (7)
O2'0.207 (12)0.110 (7)0.169 (10)−0.002 (7)0.033 (9)0.015 (7)
O20.282 (10)0.100 (5)0.180 (7)−0.020 (5)−0.061 (7)−0.051 (5)
O30.238 (9)0.059 (3)0.062 (3)−0.024 (5)0.029 (5)−0.017 (2)
O3'0.349 (16)0.074 (5)0.123 (7)−0.049 (8)0.064 (9)−0.053 (5)
O40.242 (10)0.192 (9)0.128 (6)−0.078 (8)0.062 (7)−0.107 (7)
N10.0306 (7)0.0418 (8)0.0396 (8)−0.0130 (6)0.0071 (6)−0.0221 (7)
N20.0283 (6)0.0313 (6)0.0281 (6)−0.0055 (5)0.0021 (5)−0.0114 (5)
N30.0306 (7)0.0323 (7)0.0332 (7)−0.0076 (5)0.0009 (5)−0.0138 (6)
N40.0329 (7)0.0350 (7)0.0289 (7)−0.0032 (5)0.0017 (5)−0.0137 (6)
O10.0384 (7)0.0389 (7)0.0338 (7)−0.0044 (5)0.0073 (5)−0.0147 (5)
Cl10.0372 (2)0.0397 (2)0.0311 (2)−0.00573 (16)−0.00006 (16)−0.00724 (16)
Cl20.0557 (3)0.0504 (3)0.0480 (3)−0.0067 (2)0.0007 (2)−0.0273 (2)
Co10.02642 (11)0.02914 (11)0.02756 (12)−0.00822 (8)0.00243 (8)−0.01140 (8)

Geometric parameters (Å, °)

C1—N11.328 (3)C14—H140.9300
C1—C21.394 (3)C15—C161.397 (4)
C1—H10.9300C15—H150.9300
C2—C31.365 (4)C16—C241.406 (3)
C2—H20.9300C16—C171.433 (3)
C3—C41.405 (3)C17—C181.343 (4)
C3—H30.9300C17—H170.9300
C4—C121.401 (2)C18—C191.428 (4)
C4—C51.437 (3)C18—H180.9300
C5—C61.338 (3)C19—C201.397 (4)
C5—H50.9300C19—C231.406 (3)
C6—C71.434 (3)C20—C211.359 (4)
C6—H60.9300C20—H200.9300
C7—C81.401 (3)C21—C221.401 (3)
C7—C111.407 (2)C21—H210.9300
C8—C91.360 (3)C22—N41.318 (3)
C8—H80.9300C22—H220.9300
C9—C101.403 (3)C23—N41.357 (2)
C9—H90.9300C23—C241.432 (3)
C10—N21.322 (2)C24—N31.353 (2)
C10—H100.9300N1—Co12.1389 (15)
C11—N21.354 (2)N2—Co12.1453 (14)
C11—C121.432 (3)N3—Co12.1241 (15)
C12—N11.354 (2)N4—Co12.1738 (15)
C13—N31.329 (2)O1—Co12.1108 (13)
C13—C141.398 (3)O1—H1A0.896 (10)
C13—H130.9300O1—H1B0.898 (10)
C14—C151.363 (4)Cl1—Co12.3835 (5)
N1—C1—C2122.9 (2)C17—C18—C19121.3 (2)
N1—C1—H1118.5C17—C18—H18119.4
C2—C1—H1118.5C19—C18—H18119.4
C3—C2—C1119.5 (2)C20—C19—C23117.1 (2)
C3—C2—H2120.2C20—C19—C18123.8 (2)
C1—C2—H2120.2C23—C19—C18119.1 (2)
C2—C3—C4119.1 (2)C21—C20—C19120.1 (2)
C2—C3—H3120.5C21—C20—H20120.0
C4—C3—H3120.5C19—C20—H20120.0
C12—C4—C3117.69 (18)C20—C21—C22119.1 (2)
C12—C4—C5119.22 (19)C20—C21—H21120.4
C3—C4—C5123.07 (19)C22—C21—H21120.4
C6—C5—C4121.13 (18)N4—C22—C21122.7 (2)
C6—C5—H5119.4N4—C22—H22118.6
C4—C5—H5119.4C21—C22—H22118.6
C5—C6—C7121.14 (18)N4—C23—C19122.64 (19)
C5—C6—H6119.4N4—C23—C24117.64 (15)
C7—C6—H6119.4C19—C23—C24119.72 (18)
C8—C7—C11117.27 (17)N3—C24—C16122.97 (19)
C8—C7—C6123.58 (17)N3—C24—C23117.24 (15)
C11—C7—C6119.15 (18)C16—C24—C23119.78 (18)
C9—C8—C7119.68 (17)C1—N1—C12117.90 (16)
C9—C8—H8120.2C1—N1—Co1128.30 (13)
C7—C8—H8120.2C12—N1—Co1113.80 (12)
C8—C9—C10119.29 (19)C10—N2—C11118.18 (15)
C8—C9—H9120.4C10—N2—Co1128.29 (13)
C10—C9—H9120.4C11—N2—Co1113.53 (11)
N2—C10—C9122.77 (19)C13—N3—C24117.96 (16)
N2—C10—H10118.6C13—N3—Co1127.18 (13)
C9—C10—H10118.6C24—N3—Co1114.83 (12)
N2—C11—C7122.79 (17)C22—N4—C23118.33 (17)
N2—C11—C12117.62 (14)C22—N4—Co1128.70 (14)
C7—C11—C12119.59 (16)C23—N4—Co1112.74 (12)
N1—C12—C4122.85 (17)Co1—O1—H1A116.3 (19)
N1—C12—C11117.43 (15)Co1—O1—H1B114.6 (18)
C4—C12—C11119.72 (16)H1A—O1—H1B107 (3)
N3—C13—C14122.6 (2)O1—Co1—N393.44 (6)
N3—C13—H13118.7O1—Co1—N194.48 (6)
C14—C13—H13118.7N3—Co1—N1166.38 (6)
C15—C14—C13119.6 (2)O1—Co1—N2171.52 (6)
C15—C14—H14120.2N3—Co1—N293.79 (6)
C13—C14—H14120.2N1—Co1—N277.58 (6)
C14—C15—C16119.52 (19)O1—Co1—N485.36 (5)
C14—C15—H15120.2N3—Co1—N477.19 (6)
C16—C15—H15120.2N1—Co1—N492.42 (6)
C15—C16—C24117.4 (2)N2—Co1—N491.91 (5)
C15—C16—C17123.7 (2)O1—Co1—Cl190.18 (4)
C24—C16—C17118.9 (2)N3—Co1—Cl196.39 (4)
C18—C17—C16121.3 (2)N1—Co1—Cl194.66 (5)
C18—C17—H17119.4N2—Co1—Cl193.43 (4)
C16—C17—H17119.4N4—Co1—Cl1171.92 (4)
N1—C1—C2—C30.7 (5)C9—C10—N2—Co1−178.68 (14)
C1—C2—C3—C4−1.1 (5)C7—C11—N2—C10−0.1 (2)
C2—C3—C4—C120.6 (4)C12—C11—N2—C10−179.13 (16)
C2—C3—C4—C5−178.1 (3)C7—C11—N2—Co1179.45 (13)
C12—C4—C5—C6−1.8 (3)C12—C11—N2—Co10.39 (18)
C3—C4—C5—C6176.9 (2)C14—C13—N3—C24−1.5 (3)
C4—C5—C6—C72.1 (3)C14—C13—N3—Co1176.37 (17)
C5—C6—C7—C8−179.9 (2)C16—C24—N3—C131.9 (3)
C5—C6—C7—C11−0.6 (3)C23—C24—N3—C13−178.24 (17)
C11—C7—C8—C91.4 (3)C16—C24—N3—Co1−176.25 (14)
C6—C7—C8—C9−179.36 (19)C23—C24—N3—Co13.6 (2)
C7—C8—C9—C10−0.8 (3)C21—C22—N4—C23−0.7 (3)
C8—C9—C10—N2−0.3 (3)C21—C22—N4—Co1−174.82 (17)
C8—C7—C11—N2−1.0 (3)C19—C23—N4—C220.1 (3)
C6—C7—C11—N2179.73 (16)C24—C23—N4—C22179.86 (17)
C8—C7—C11—C12178.05 (16)C19—C23—N4—Co1175.15 (14)
C6—C7—C11—C12−1.2 (3)C24—C23—N4—Co1−5.10 (19)
C3—C4—C12—N10.5 (3)C13—N3—Co1—O1−98.21 (17)
C5—C4—C12—N1179.22 (19)C24—N3—Co1—O179.76 (12)
C3—C4—C12—C11−178.9 (2)C13—N3—Co1—N1136.3 (2)
C5—C4—C12—C11−0.1 (3)C24—N3—Co1—N1−45.7 (3)
N2—C11—C12—N11.3 (2)C13—N3—Co1—N286.24 (17)
C7—C11—C12—N1−177.80 (16)C24—N3—Co1—N2−95.79 (12)
N2—C11—C12—C4−179.35 (17)C13—N3—Co1—N4177.34 (17)
C7—C11—C12—C41.6 (3)C24—N3—Co1—N4−4.69 (12)
N3—C13—C14—C150.1 (4)C13—N3—Co1—Cl1−7.64 (17)
C13—C14—C15—C161.0 (4)C24—N3—Co1—Cl1170.32 (12)
C14—C15—C16—C24−0.7 (3)C1—N1—Co1—O14.1 (2)
C14—C15—C16—C17179.6 (2)C12—N1—Co1—O1−175.11 (13)
C15—C16—C17—C18−179.8 (2)C1—N1—Co1—N3129.5 (3)
C24—C16—C17—C180.4 (3)C12—N1—Co1—N3−49.7 (3)
C16—C17—C18—C190.3 (4)C1—N1—Co1—N2−179.0 (2)
C17—C18—C19—C20179.3 (2)C12—N1—Co1—N21.85 (13)
C17—C18—C19—C23−0.5 (3)C1—N1—Co1—N489.6 (2)
C23—C19—C20—C210.6 (3)C12—N1—Co1—N4−89.58 (13)
C18—C19—C20—C21−179.1 (2)C1—N1—Co1—Cl1−86.5 (2)
C19—C20—C21—C22−1.1 (4)C12—N1—Co1—Cl194.34 (13)
C20—C21—C22—N41.2 (4)C10—N2—Co1—O1−160.7 (3)
C20—C19—C23—N4−0.1 (3)C11—N2—Co1—O119.8 (4)
C18—C19—C23—N4179.69 (18)C10—N2—Co1—N3−12.39 (16)
C20—C19—C23—C24−179.81 (18)C11—N2—Co1—N3168.16 (12)
C18—C19—C23—C24−0.1 (3)C10—N2—Co1—N1178.27 (17)
C15—C16—C24—N3−0.8 (3)C11—N2—Co1—N1−1.18 (11)
C17—C16—C24—N3178.91 (19)C10—N2—Co1—N4−89.67 (16)
C15—C16—C24—C23179.33 (18)C11—N2—Co1—N490.87 (12)
C17—C16—C24—C23−0.9 (3)C10—N2—Co1—Cl184.26 (15)
N4—C23—C24—N31.1 (2)C11—N2—Co1—Cl1−95.20 (11)
C19—C23—C24—N3−179.10 (16)C22—N4—Co1—O185.00 (17)
N4—C23—C24—C16−179.01 (16)C23—N4—Co1—O1−89.41 (12)
C19—C23—C24—C160.7 (3)C22—N4—Co1—N3179.59 (18)
C2—C1—N1—C120.3 (4)C23—N4—Co1—N35.19 (11)
C2—C1—N1—Co1−178.9 (2)C22—N4—Co1—N1−9.31 (17)
C4—C12—N1—C1−0.9 (3)C23—N4—Co1—N1176.29 (12)
C11—C12—N1—C1178.44 (19)C22—N4—Co1—N2−86.96 (17)
C4—C12—N1—Co1178.38 (15)C23—N4—Co1—N298.64 (12)
C11—C12—N1—Co1−2.3 (2)C22—N4—Co1—Cl1141.7 (3)
C9—C10—N2—C110.7 (3)C23—N4—Co1—Cl1−32.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.90 (2)2.29 (2)3.1530 (18)162 (2)
O1—H1B···Cl2ii0.90 (2)2.19 (2)3.0836 (15)173 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, y+1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2895).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Arai, T., Hayashi, K., Ozaki, H. & Sawai, H. (2005). Nippon Kagakkai Koen Yokoshu Jpn, 85, 1336–1337.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Garuti, L., Ferranti, A., Burnelli, S., Varoli, L., Giovanninetti, G., Brigidi, P. & Casolari, A. (1989). Boll. Chim. Farm.128, 136–140. [PubMed]
  • Müller, B. C., Raphael, A. L. & Barton, J. K. (1987). Proc. Natl Acad. Sci. USA, 84, 1764–1768. [PubMed]
  • Nobufumi, M. (1969). Bull. Chem. Soc. Jpn, 42, 2275–2281.
  • Rama Krishna, N., Yanhong, D., Osmond, J., D′Cruz, C. N. & Fatih, M. U. (2000). Clin. Cancer Res.6, 1546–1556.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Sun, J.-H. & Feng, X. (2006). Acta Cryst. E62, m3370–m3372.
  • Weijnen, J. G. J., Koudijs, A. & Engbersen, J. F. J. (1992). J. Org. Chem.57, 7258–7265.
  • Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2006). Acta Cryst. E62, m3330–m3332.
  • Zhong, H., Zeng, X.-R. & Luo, Q.-Y. (2007). Acta Cryst. E63, m221–m223.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography