PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1471.
Published online 2009 October 31. doi:  10.1107/S160053680904433X
PMCID: PMC2971190

Bis[(E)-4-bromo-2-(ethoxy­imino­meth­yl)phenolato-κ2 N,O 1]copper(II)

Abstract

The title compound, [Cu(C9H9BrNO2)2], is a centrosymmetric mononuclear copper(II) complex. The Cu atom is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate (E)-4-bromo-2-(ethoxy­imino­meth­yl)phenolate oxime-type ligands. An inter­esting feature of the crystal structure is the centrosymmetric inter­molecular Cu(...)O inter­action [3.382 (1) Å], which establishes an infinite chain structure along the b axis.

Related literature

For background to oximes, see: Cervera et al. (1997 [triangle]); Chaudhuri, (2003 [triangle]); Costes et al. (1998 [triangle]); Kukushkin et al. (1996 [triangle]). For related structures, see: Dong et al. (2009 [triangle]). For the synthesis, see: Wang et al. (2008 [triangle]); Zhao et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1471-scheme1.jpg

Experimental

Crystal data

  • [Cu(C9H9BrNO2)2]
  • M r = 549.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1471-efi1.jpg
  • a = 10.0682 (13) Å
  • b = 5.4998 (8) Å
  • c = 17.990 (2) Å
  • β = 96.846 (1)°
  • V = 989.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.17 mm−1
  • T = 298 K
  • 0.41 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.226, T max = 0.531
  • 4684 measured reflections
  • 1741 independent reflections
  • 1356 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.080
  • S = 1.01
  • 1741 reflections
  • 125 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904433X/om2289sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904433X/om2289Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of the Education Department of Gansu Province (0904–11) and the ‘Jing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University, which are gratefully acknowledged.

supplementary crystallographic information

Comment

Oximes are a traditional class of chelating ligands widely used in coordination and analytical chemistry and extraction metallurgy (Kukushkin et al., 1996; Chaudhuri, 2003). Due to their marked ability to from bridges between metal ions, oxime-containing ligands may be used to obtain polynuclear compounds in the field of molecular magnetism and supramolecular chemistry (Cervera et al., 1997; Costes et al., 1998). As a continuation of our study (Wang et al., 2008; Zhao et al., 2009) on oxime-type compounds, the title mononuclear copper(II) complex (Fig. 1), is reported in this paper.

The title compound is a centrosymmetric mononuclear copper(II) complex. The copper(II) ion, lying on the inversion centre, is four-coordinated in a trans-CuN2O2 square-planar geometry, with two phenolate O and two oxime N atoms from two N,O-bidentate oxime-type ligands. All bond lengths and angles are within normal ranges. The Cu—O and Cu—N bond lengths are 1.880 (2) Å and 1.994 (3) Å, respectively, which are comparable to those observed in a similar Schiff base copper(II) complex (Dong et al., 2009).

The interesting feature of the crystal structure, as shown in Fig. 2, is the centrosymmetric intermolecular Cu···O [3.382 (1) Å] interaction, which forms an infinite one-dimensional chain structure along the b axis.

Experimental

(E)-5-Bromo-2-hydroxybenzaldehyde O-ethyl oxime (HL) was synthesized according to the analogous method (Wang et al., 2008; Zhao et al., 2009). A blue solution of copper(II) acetate monohydrate (1.7 mg, 0.008 mmol) in methanol (3 ml) was added dropwise to a solution of HL (2.1 mg, 0.009 mmol) in methanol (4 ml) at room temperature. The color of the mixing solution turned to yellow immediately, then turned to brown slowly and was allowed to stand at room temperature for several days. With evaporation of the solvent, dark-brown needle-like single crystals suitable for X-ray crystallographic analysis were obtained. IR: ν C=N, 1608 cm-1, ν Ar—O, 1242 cm-1, ν Cu—N, 445 cm-1 and ν Cu—O, 424 cm-1. Yield, 47.1%. Anal. Calcd. for C18H18Br2CuN2O4: C, 39.33; H, 3.30; Cu, 11.56; N, 5.10. Found: C, 39.20; H, 3.38; Cu, 11.62; N, 4.87.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 Å (CH3), 0.97 Å (CH2) and 0.93 Å (CH). The isotropic displacement parameters for all H atoms were set equal to 1.2 or 1.5 Ueq of the carrier atom.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme [Symmetry codes: -x + 1,-y + 1,-z + 1]. Unlabelled atoms are related to their labelled counterparts by the inversion operation. Displacement ellipsoids for non-hydrogen atoms ...
Fig. 2.
Packing diagram for the title compound, showing an infinite one-dimensional chain structure formed by short Cu···O contact viewed along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Cu(C9H9BrNO2)2]F(000) = 542
Mr = 549.70Dx = 1.846 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1900 reflections
a = 10.0682 (13) Åθ = 2.2–25.1°
b = 5.4998 (8) ŵ = 5.17 mm1
c = 17.990 (2) ÅT = 298 K
β = 96.846 (1)°Needle-shaped, black
V = 989.1 (2) Å30.41 × 0.21 × 0.14 mm
Z = 2

Data collection

Bruker SMART 1000 diffractometer1741 independent reflections
Radiation source: fine-focus sealed tube1356 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −11→7
Tmin = 0.226, Tmax = 0.531k = −6→6
4684 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0416P)2 + 0.0351P] where P = (Fo2 + 2Fc2)/3
1741 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = −0.55 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.50000.50000.50000.04220 (19)
Br1−0.06756 (4)0.09316 (8)0.22617 (2)0.06250 (18)
N10.5039 (2)0.2157 (5)0.43148 (14)0.0399 (6)
O10.3323 (2)0.5904 (4)0.45038 (14)0.0573 (7)
O20.6088 (2)0.0414 (4)0.44170 (12)0.0463 (6)
C10.4064 (3)0.1341 (6)0.38559 (17)0.0408 (8)
H10.4186−0.01430.36250.049*
C20.2803 (3)0.2546 (6)0.36725 (16)0.0374 (7)
C30.2497 (3)0.4733 (6)0.40143 (19)0.0441 (8)
C40.1206 (3)0.5724 (7)0.3809 (2)0.0550 (10)
H40.09770.71710.40290.066*
C50.0289 (3)0.4618 (7)0.3298 (2)0.0508 (9)
H5−0.05520.53070.31760.061*
C60.0613 (3)0.2477 (6)0.29645 (18)0.0420 (8)
C70.1851 (3)0.1453 (6)0.31422 (18)0.0439 (8)
H70.20620.00180.29090.053*
C80.7242 (3)0.1298 (7)0.4114 (2)0.0545 (10)
H8A0.74880.28940.43150.065*
H8B0.70700.14160.35730.065*
C90.8336 (4)−0.0500 (8)0.4337 (2)0.0677 (12)
H9A0.8477−0.06260.48730.102*
H9B0.91460.00340.41560.102*
H9C0.8085−0.20610.41260.102*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0333 (3)0.0474 (4)0.0453 (4)0.0111 (3)0.0021 (2)−0.0040 (3)
Br10.0549 (3)0.0701 (3)0.0589 (3)−0.00385 (19)−0.00800 (18)−0.00911 (19)
N10.0340 (14)0.0437 (17)0.0429 (16)0.0140 (12)0.0079 (12)0.0043 (13)
O10.0416 (13)0.0519 (16)0.0738 (17)0.0155 (11)−0.0115 (12)−0.0206 (13)
O20.0385 (12)0.0467 (14)0.0542 (14)0.0163 (11)0.0083 (10)0.0033 (11)
C10.0415 (18)0.040 (2)0.0425 (19)0.0084 (15)0.0117 (15)−0.0025 (15)
C20.0345 (16)0.042 (2)0.0368 (18)0.0042 (14)0.0067 (13)0.0007 (14)
C30.0372 (18)0.045 (2)0.050 (2)0.0038 (16)0.0046 (15)−0.0013 (17)
C40.0411 (19)0.050 (2)0.070 (3)0.0150 (17)−0.0076 (17)−0.0134 (19)
C50.0367 (18)0.050 (2)0.064 (2)0.0097 (16)−0.0010 (16)−0.0011 (19)
C60.0356 (17)0.051 (2)0.0390 (18)−0.0034 (15)0.0003 (14)0.0010 (16)
C70.049 (2)0.043 (2)0.0414 (19)0.0039 (16)0.0126 (16)−0.0029 (16)
C80.0437 (19)0.069 (3)0.053 (2)0.0164 (18)0.0150 (17)0.0045 (19)
C90.045 (2)0.081 (3)0.079 (3)0.025 (2)0.016 (2)0.013 (2)

Geometric parameters (Å, °)

Cu1—O1i1.880 (2)C3—C41.417 (4)
Cu1—O11.880 (2)C4—C51.366 (5)
Cu1—N1i1.994 (3)C4—H40.9300
Cu1—N11.994 (3)C5—C61.378 (5)
Br1—C61.901 (3)C5—H50.9300
N1—C11.285 (4)C6—C71.370 (4)
N1—O21.422 (3)C7—H70.9300
O1—C31.307 (4)C8—C91.499 (5)
O2—C81.427 (4)C8—H8A0.9700
C1—C21.435 (4)C8—H8B0.9700
C1—H10.9300C9—H9A0.9600
C2—C31.402 (4)C9—H9B0.9600
C2—C71.405 (4)C9—H9C0.9600
O1i—Cu1—O1180.000 (1)C3—C4—H4119.0
O1i—Cu1—N1i89.80 (10)C4—C5—C6119.8 (3)
O1—Cu1—N1i90.20 (10)C4—C5—H5120.1
O1i—Cu1—N190.20 (10)C6—C5—H5120.1
O1—Cu1—N189.80 (10)C7—C6—C5120.4 (3)
N1i—Cu1—N1180.0C7—C6—Br1120.0 (3)
C1—N1—O2110.2 (2)C5—C6—Br1119.6 (2)
C1—N1—Cu1127.0 (2)C6—C7—C2120.7 (3)
O2—N1—Cu1121.18 (18)C6—C7—H7119.6
C3—O1—Cu1130.8 (2)C2—C7—H7119.6
N1—O2—C8110.3 (2)O2—C8—C9106.1 (3)
N1—C1—C2125.0 (3)O2—C8—H8A110.5
N1—C1—H1117.5C9—C8—H8A110.5
C2—C1—H1117.5O2—C8—H8B110.5
C3—C2—C7119.8 (3)C9—C8—H8B110.5
C3—C2—C1122.0 (3)H8A—C8—H8B108.7
C7—C2—C1118.2 (3)C8—C9—H9A109.5
O1—C3—C2124.3 (3)C8—C9—H9B109.5
O1—C3—C4118.4 (3)H9A—C9—H9B109.5
C2—C3—C4117.3 (3)C8—C9—H9C109.5
C5—C4—C3122.0 (3)H9A—C9—H9C109.5
C5—C4—H4119.0H9B—C9—H9C109.5
O1i—Cu1—N1—C1168.7 (3)C7—C2—C3—O1−178.8 (3)
O1—Cu1—N1—C1−11.3 (3)C1—C2—C3—O12.3 (5)
O1i—Cu1—N1—O24.8 (2)C7—C2—C3—C40.9 (5)
O1—Cu1—N1—O2−175.2 (2)C1—C2—C3—C4−178.0 (3)
N1i—Cu1—O1—C3−168.8 (3)O1—C3—C4—C5179.6 (3)
N1—Cu1—O1—C311.2 (3)C2—C3—C4—C5−0.2 (6)
C1—N1—O2—C8113.3 (3)C3—C4—C5—C6−0.2 (6)
Cu1—N1—O2—C8−80.4 (3)C4—C5—C6—C70.0 (5)
O2—N1—C1—C2174.8 (3)C4—C5—C6—Br1179.3 (3)
Cu1—N1—C1—C29.4 (5)C5—C6—C7—C20.7 (5)
N1—C1—C2—C3−2.9 (5)Br1—C6—C7—C2−178.6 (2)
N1—C1—C2—C7178.1 (3)C3—C2—C7—C6−1.2 (5)
Cu1—O1—C3—C2−9.0 (5)C1—C2—C7—C6177.7 (3)
Cu1—O1—C3—C4171.2 (3)N1—O2—C8—C9172.7 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2289).

References

  • Cervera, B., Ruiz, R., Lloret, F., Julve, M., Cano, J., Faus, J., Bois, C. & Mrozinski, J. (1997). J. Chem. Soc. Dalton Trans. pp. 395–401.
  • Chaudhuri, P. (2003). Coord. Chem. Rev.243, 143–168.
  • Costes, J.-P., Dahan, F., Dupuis, A. & Laurent, J.-P. (1998). J. Chem. Soc. Dalton Trans. pp. 1307–1314.
  • Dong, W.-K., Tong, J.-F., An, L.-L., Wu, J.-C. & Yao, J. (2009). Acta Cryst. E65, m945. [PMC free article] [PubMed]
  • Kukushkin, V. Yu., Tudela, D. & Pombeiro, A. J. L. (1996). Coord. Chem. Rev.156, 333–362.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wang, J.-S., Jiang, Y.-L., Dong, W.-K., Xu, L. & Kong, A.-P. (2008). Acta Cryst. E64, o1794. [PMC free article] [PubMed]
  • Zhao, L., Dong, W.-K., Wu, J.-C., Sun, Y.-X. & Xu, L. (2009). Acta Cryst. E65, o2462. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography