PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1483.
Published online 2009 October 31. doi:  10.1107/S1600536809044535
PMCID: PMC2971189

(1H-1,3-Benzimidazole-5,6-dicarboxylic acid)(5-carboxyl­ato-1H-1,3-benzimidazole-6-carboxylic acid)silver(I) monohydrate

Abstract

The title compound, [Ag(C9H5N2O4)(C9H6N2O4)]·H2O, contains one independent Ag atom, a neutral 1H-benzimidazole-5,6-dicarboxylic acid (bdcH), its monodeprotonated form, i.e. 5-carboxyl­ato-1H-1,3-benzimidazole-6-carboxylic acid (bdc), and one solvent water mol­ecule, the latter being disordered over three sites with site occupancy factors of 0.375 (× 2) and 0.25. In addition, the H atom on one carboxylic acid residue is disordered, being connected to each of the O atoms 50% of the time. The Ag atom is in a virtually linear geometry defined by two N atoms derived from the bdc and bdcH ligands. The three-dimensional supra­molecular structure is stablized by extensive O—H(...)O and N—H(...)O hydrogen bonds. An intramolecular O—H(...)O hydrogen bond is also present.

Related literature

For related structures, see: Gao et al. (2008 [triangle]); Li et al. (2009 [triangle]); Lo et al. (2007 [triangle]); Wei et al. (2008 [triangle]); Yao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1483-scheme1.jpg

Experimental

Crystal data

  • [Ag(C9H5N2O4)(C9H6N4O2)]·H2O
  • M r = 537.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1483-efi1.jpg
  • a = 28.483 (3) Å
  • b = 18.6398 (17) Å
  • c = 7.2251 (7) Å
  • β = 99.046 (1)°
  • V = 3788.2 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.13 mm−1
  • T = 298 K
  • 0.31 × 0.23 × 0.19 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.740, T max = 0.807
  • 10329 measured reflections
  • 3675 independent reflections
  • 2572 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.092
  • S = 1.04
  • 3675 reflections
  • 307 parameters
  • 18 restraints
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044535/tk2558sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044535/tk2558Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by Shanxi Datong University.

supplementary crystallographic information

Comment

N-Heterocyclic carboxylic acids as organic ligands attract attention not only because of versatile coordination modes but also owing to its ability to facilitate the formation of high-dimensional coordination polymers. One such example, namely, 1H-benzimidazole-5,6-dicarboxylic acid (bdcH), is a semi-rigid, multidentate ligand that can provide up to six donor atoms (two N and four O atoms) with variable coordination modes. This is therefore considered as an excellent candidate for generating 3-D architectures. Up to now, the reported complexes based on the bdc ligand are rare but have attracted recent interest (Lo et al., 2007; Gao et al., 2008; Wei et al., 2008; Yao et al., 2008; Li et al., 2009). Herein, the first Ag supramolecular compound based on the bdc ligand, namely [Ag(C9H5N2O2)(C9H6N2O2)].H2O, (I), is reported.

As is shown in Fig. 1, the asymmetric unit consists of bdcH and bdc ligands, one Ag atom, and one solvent water molecule. The water molecule is disordered over three sites with site occupancy factors = 0.375 (x 2) and 0.25, see Experimental. The Ag atom has a linear coordination environment being bound to two N atoms derived from the bdc ligands.

A packing diagram showing the 3-D supramolecular structure arising from a larg e number of hydrogen bonding interactions is shown in Fig. 2. Through the agency of intermolecular hydrogen bond interactions involving the bdc and bdcH ligands, Table 1, a layer structure is generated. These are connected into a 3-D network via hydrogen bonding interactions involving the water molecules.

Experimental

A mixture of the bdc (0.0415 g, 0.20 mmol), AgNO3 (0.0340 g, 0.20 mmol) and water (10 ml) was heated to 430 K for 72 h in a 23 ml Teflon-lined stainless-steel autoclave. After the reaction, the bomb was cooled to room temperature in a rate of 278 K per hour. Colourless prismatic crystals were collected and dried in air.

Refinement

For the bdc ligand, all H atoms were placed at calculated positions and were treated as riding on the parent atoms with C—H = 0.93 and O—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C, O). The H atom on the carboxylic acid residue with the O3 and O4 atoms was disordered. This was modelled over two sites of equal weight.

The solvent water molecule was also disordered over three positions, with site occupancy factors of 0.375, 0.375 and 0.25, respectively. The H atoms were included for each partially occupied molecule with O—H distances of 0.85 Å, and with Uĩso~(H) = 1.2U~eq~(O).

Figures

Fig. 1.
Displacement ellipsoid plot (50% probability level) of (I), with atom numbering. The water molecule is fractionally occupied with site occupancy factors of 0.375, 0.375 and 0.25.
Fig. 2.
The packing diagram of (I), with partially-occupied H atoms omitted for clarity. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ag(C9H5N2O4)(C9H6N2O4)]·H2OF(000) = 2145.0
Mr = 537.37Dx = 1.885 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2071 reflections
a = 28.483 (3) Åθ = 2.4–22.4°
b = 18.6398 (17) ŵ = 1.13 mm1
c = 7.2251 (7) ÅT = 298 K
β = 99.046 (1)°Block, colourless
V = 3788.2 (6) Å30.31 × 0.23 × 0.19 mm
Z = 8

Data collection

Bruker APEXII area-detector diffractometer3675 independent reflections
Radiation source: fine-focus sealed tube2572 reflections with I > 2σ(I)
graphiteRint = 0.044
[var phi] and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −35→35
Tmin = 0.740, Tmax = 0.807k = −20→22
10329 measured reflectionsl = −8→7

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3
3675 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 0.52 e Å3
18 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ag10.374338 (11)0.168833 (16)0.58373 (5)0.04290 (14)
O10.36561 (10)−0.26003 (15)0.5821 (5)0.0606 (10)
H10.3710−0.30490.58320.073*
O20.44076 (10)−0.23159 (15)0.5698 (5)0.0547 (9)
O30.45996 (10)−0.11508 (16)0.3045 (4)0.0470 (8)
H30.4863−0.10560.26880.056*0.50
O40.50175 (10)−0.08915 (16)0.5782 (4)0.0491 (8)
H40.5006−0.08300.69400.059*0.50
O50.30757 (10)0.53188 (16)0.6824 (5)0.0548 (9)
O60.28554 (11)0.42025 (16)0.6978 (5)0.0580 (10)
O70.37366 (11)0.60136 (15)0.6187 (5)0.0538 (9)
H70.34930.57810.63860.065*
O80.44651 (11)0.58811 (16)0.5706 (5)0.0612 (10)
N10.33935 (11)0.07120 (16)0.6181 (5)0.0314 (8)
N20.28969 (11)−0.01398 (17)0.6799 (5)0.0338 (8)
H2A0.2646−0.03380.70950.041*
N30.41656 (11)0.25914 (16)0.5533 (5)0.0384 (9)
N40.47918 (11)0.32435 (17)0.5099 (5)0.0395 (9)
H4A0.50710.33470.48710.047*
C10.29744 (13)0.0560 (2)0.6672 (6)0.0354 (10)
H1A0.27570.09080.69050.043*
C20.32928 (12)−0.0490 (2)0.6369 (6)0.0287 (9)
C30.36007 (13)0.00500 (19)0.5978 (6)0.0275 (9)
C40.40427 (13)−0.01206 (19)0.5503 (6)0.0288 (9)
H4B0.42510.02370.52470.035*
C50.41601 (13)−0.0831 (2)0.5424 (6)0.0301 (9)
C60.38460 (13)−0.1378 (2)0.5819 (6)0.0293 (9)
C70.34103 (14)−0.1213 (2)0.6295 (6)0.0349 (10)
H7A0.3202−0.15690.65570.042*
C80.40022 (15)−0.2145 (2)0.5758 (6)0.0366 (10)
C90.46214 (15)−0.0985 (2)0.4738 (7)0.0392 (11)
C100.46025 (15)0.2587 (2)0.5131 (7)0.0428 (11)
H10A0.47620.21700.48950.051*
C110.44556 (13)0.3720 (2)0.5500 (6)0.0327 (10)
C120.40613 (13)0.3312 (2)0.5766 (6)0.0327 (9)
C130.36540 (13)0.3643 (2)0.6177 (6)0.0327 (10)
H13A0.33960.33670.63930.039*
C140.36314 (13)0.4380 (2)0.6266 (6)0.0321 (10)
C150.40400 (14)0.47992 (19)0.5986 (6)0.0314 (9)
C160.44451 (14)0.4463 (2)0.5622 (6)0.0352 (10)
H16A0.47110.47320.54580.042*
C170.40890 (16)0.5620 (2)0.5952 (6)0.0395 (11)
C180.31614 (14)0.4648 (2)0.6704 (6)0.0399 (11)
O1W0.2366 (4)0.1989 (7)0.851 (2)0.126 (5)0.38
H1C0.23790.20420.96810.151*0.38
H1D0.22550.15650.84230.151*0.38
O2W0.2352 (4)0.2876 (6)0.5630 (19)0.108 (4)0.38
H2C0.24950.32570.60520.129*0.38
H2D0.25300.25090.58120.129*0.38
O3W0.2637 (6)0.2800 (10)0.809 (3)0.110 (6)0.25
H3C0.27020.32230.77670.131*0.25
H3D0.25640.26470.91110.131*0.25

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.0433 (2)0.02077 (18)0.0675 (3)−0.00497 (15)0.01755 (17)0.00033 (16)
O10.0401 (18)0.0188 (16)0.126 (3)−0.0020 (13)0.0233 (19)0.0014 (17)
O20.0414 (18)0.0328 (18)0.096 (3)0.0092 (14)0.0283 (17)0.0062 (17)
O30.0345 (16)0.059 (2)0.051 (2)−0.0025 (14)0.0147 (15)−0.0074 (16)
O40.0297 (16)0.064 (2)0.054 (2)−0.0008 (15)0.0076 (15)0.0002 (16)
O50.0422 (18)0.0341 (19)0.093 (3)0.0100 (14)0.0259 (18)−0.0047 (17)
O60.0364 (17)0.0408 (19)0.104 (3)−0.0013 (15)0.0317 (18)−0.0021 (18)
O70.0478 (19)0.0226 (16)0.096 (3)0.0029 (14)0.0256 (19)0.0006 (16)
O80.049 (2)0.0314 (19)0.110 (3)−0.0119 (15)0.032 (2)−0.0032 (18)
N10.0261 (18)0.0219 (17)0.047 (2)−0.0002 (14)0.0087 (15)−0.0005 (15)
N20.0201 (16)0.033 (2)0.051 (2)−0.0036 (14)0.0140 (15)−0.0005 (16)
N30.0298 (18)0.0201 (18)0.068 (3)0.0007 (14)0.0167 (17)0.0010 (16)
N40.0279 (18)0.030 (2)0.066 (3)0.0014 (15)0.0215 (17)0.0003 (17)
C10.028 (2)0.028 (2)0.051 (3)0.0021 (18)0.008 (2)−0.0022 (19)
C20.0202 (19)0.028 (2)0.039 (3)−0.0009 (16)0.0099 (17)−0.0025 (18)
C30.0240 (19)0.022 (2)0.037 (2)−0.0045 (16)0.0071 (17)0.0005 (17)
C40.0220 (19)0.024 (2)0.042 (3)−0.0034 (16)0.0110 (18)0.0015 (17)
C50.024 (2)0.030 (2)0.037 (3)−0.0024 (17)0.0052 (17)0.0002 (18)
C60.031 (2)0.0189 (19)0.038 (3)−0.0007 (16)0.0056 (19)0.0010 (17)
C70.032 (2)0.026 (2)0.049 (3)−0.0042 (18)0.012 (2)0.0023 (19)
C80.035 (2)0.027 (2)0.052 (3)0.0037 (19)0.017 (2)−0.0011 (19)
C90.034 (2)0.029 (2)0.057 (3)0.0048 (19)0.013 (2)−0.001 (2)
C100.038 (2)0.026 (2)0.068 (3)0.0064 (19)0.018 (2)−0.001 (2)
C110.028 (2)0.025 (2)0.047 (3)−0.0020 (17)0.0123 (19)0.0020 (18)
C120.033 (2)0.022 (2)0.045 (3)0.0006 (18)0.0105 (18)0.0026 (19)
C130.028 (2)0.024 (2)0.049 (3)−0.0010 (17)0.0154 (19)0.0035 (18)
C140.028 (2)0.028 (2)0.042 (3)0.0061 (17)0.0098 (18)−0.0003 (18)
C150.033 (2)0.021 (2)0.042 (3)−0.0025 (17)0.0095 (19)0.0004 (17)
C160.029 (2)0.026 (2)0.052 (3)−0.0052 (17)0.013 (2)0.0035 (19)
C170.045 (3)0.029 (2)0.045 (3)−0.003 (2)0.011 (2)−0.001 (2)
C180.031 (2)0.035 (3)0.055 (3)0.001 (2)0.011 (2)0.000 (2)
O1W0.100 (7)0.111 (7)0.168 (9)0.017 (6)0.025 (7)−0.013 (7)
O2W0.096 (7)0.071 (6)0.158 (9)−0.017 (6)0.025 (6)0.000 (6)
O3W0.095 (9)0.102 (9)0.142 (10)−0.019 (7)0.050 (8)0.029 (8)

Geometric parameters (Å, °)

Ag1—N32.100 (3)C2—C31.393 (5)
Ag1—N12.108 (3)C3—C41.393 (5)
O1—C81.307 (5)C4—C51.369 (5)
O1—H10.8498C4—H4B0.9300
O2—C81.205 (5)C5—C61.415 (5)
O3—C91.254 (5)C5—C91.503 (5)
O3—H30.8499C6—C71.374 (5)
O4—C91.267 (5)C6—C81.500 (5)
O4—H40.8500C7—H7A0.9300
O5—C181.280 (5)C10—H10A0.9300
O6—C181.242 (5)C11—C161.388 (5)
O7—C171.277 (5)C11—C121.394 (5)
O7—H70.8499C12—C131.387 (5)
O8—C171.215 (5)C13—C141.378 (5)
N1—C11.329 (5)C13—H13A0.9300
N1—C31.385 (5)C14—C151.442 (5)
N2—C11.328 (5)C14—C181.508 (5)
N2—C21.380 (4)C15—C161.375 (5)
N2—H2A0.8600C15—C171.536 (5)
N3—C101.322 (5)C16—H16A0.9300
N3—C121.391 (5)O1W—H1C0.8500
N4—C101.339 (5)O1W—H1D0.8501
N4—C111.370 (5)O2W—H2C0.8501
N4—H4A0.8600O2W—H2D0.8501
C1—H1A0.9300O3W—H3C0.8496
C2—C71.391 (5)O3W—H3D0.8496
N3—Ag1—N1173.32 (12)C2—C7—H7A121.3
C8—O1—H1120.1O2—C8—O1124.2 (4)
C9—O3—H3109.5O2—C8—C6122.9 (4)
C9—O4—H4115.8O1—C8—C6112.9 (3)
C17—O7—H7114.2O3—C9—O4121.2 (4)
C1—N1—C3104.7 (3)O3—C9—C5117.2 (4)
C1—N1—Ag1132.6 (3)O4—C9—C5121.4 (4)
C3—N1—Ag1122.6 (2)N3—C10—N4113.2 (3)
C1—N2—C2107.4 (3)N3—C10—H10A123.4
C1—N2—H2A126.3N4—C10—H10A123.4
C2—N2—H2A126.3N4—C11—C16133.1 (4)
C10—N3—C12105.0 (3)N4—C11—C12106.3 (3)
C10—N3—Ag1126.3 (3)C16—C11—C12120.6 (3)
C12—N3—Ag1128.6 (2)C13—C12—N3131.1 (3)
C10—N4—C11107.0 (3)C13—C12—C11120.4 (4)
C10—N4—H4A126.5N3—C12—C11108.5 (3)
C11—N4—H4A126.5C14—C13—C12120.0 (4)
N2—C1—N1113.2 (3)C14—C13—H13A120.0
N2—C1—H1A123.4C12—C13—H13A120.0
N1—C1—H1A123.4C13—C14—C15119.3 (3)
N2—C2—C7132.6 (3)C13—C14—C18112.9 (3)
N2—C2—C3105.5 (3)C15—C14—C18127.8 (4)
C7—C2—C3121.9 (3)C16—C15—C14120.0 (4)
N1—C3—C2109.3 (3)C16—C15—C17111.7 (3)
N1—C3—C4130.2 (3)C14—C15—C17128.2 (3)
C2—C3—C4120.5 (3)C15—C16—C11119.6 (3)
C5—C4—C3117.8 (3)C15—C16—H16A120.2
C5—C4—H4B121.1C11—C16—H16A120.2
C3—C4—H4B121.1O8—C17—O7121.2 (4)
C4—C5—C6121.5 (3)O8—C17—C15119.1 (4)
C4—C5—C9115.5 (3)O7—C17—C15119.7 (4)
C6—C5—C9122.9 (3)O6—C18—O5119.8 (4)
C7—C6—C5120.9 (3)O6—C18—C14118.7 (4)
C7—C6—C8120.3 (3)O5—C18—C14121.5 (4)
C5—C6—C8118.8 (3)H1C—O1W—H1D97.8
C6—C7—C2117.3 (3)H2C—O2W—H2D112.1
C6—C7—H7A121.3H3C—O3W—H3D130.0

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.851.772.603 (4)168
O3—H3···O3ii0.851.712.528 (5)162
O4—H4···O4iii0.851.662.500 (6)168
O7—H7···O50.851.542.389 (4)176
N2—H2A···O6iv0.861.882.733 (4)173
N4—H4A···O8v0.862.042.805 (4)148

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y, −z+1/2; (iii) −x+1, y, −z+3/2; (iv) −x+1/2, y−1/2, −z+3/2; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2558).

References

  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. [PMC free article] [PubMed]
  • Li, Z., Dai, J. & Yue, S. (2009). Acta Cryst. E65, m775. [PMC free article] [PubMed]
  • Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wei, Y.-Q., Yu, Y.-F. & Wu, K.-C. (2008). Cryst. Growth Des.8, 2087–2089.
  • Yao, Y.-L., Che, Y.-X. & Zheng, J.-M. (2008). Cryst. Growth Des.8, 2299–2306.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography