PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1360.
Published online 2009 October 17. doi:  10.1107/S1600536809040628
PMCID: PMC2971185

Bis(μ-biphenyl-2,2′-dicarboxyl­ato)bis­[aqua­(4,4′-dimethyl-2,2′-bipyridine-κ2 N,N′)copper(II)]

Abstract

The mol­ecule of the title binuclear copper(II) complex, [Cu2(C14H8O4)2(C12H12N2)2(H2O)2], is bis­ected by a crystallographic twofold axis. Each CuII atom is coordinated in a distorted octa­hedral geometry by three O atoms from two biphen­yl-2,2′-dicarboxyl­ate anions, one aqua O atom and two N atoms of a 4,4′-dimethyl-2,2′-bipyridine ligand. Intramolecular O—H(...)O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms are also present.

Related literature

For related structures, see: Li et al. (2009 [triangle]); Jiang & Feng (2009 [triangle]); Xu et al. (2009 [triangle]); Zhang et al. (2009 [triangle]); Rizal & Ng (2009 [triangle]); Zhang (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1360-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C14H8O4)2(C12H12N2)2(H2O)2]
  • M r = 1109.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1360-efi2.jpg
  • a = 17.104 (3) Å
  • b = 15.395 (2) Å
  • c = 18.289 (3) Å
  • β = 104.413 (3)°
  • V = 4664.2 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.98 mm−1
  • T = 296 K
  • 0.26 × 0.24 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.785, T max = 0.814
  • 13512 measured reflections
  • 4594 independent reflections
  • 3108 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.109
  • S = 0.93
  • 4594 reflections
  • 310 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040628/jh2107sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040628/jh2107Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title binuclear copper(II) complex, [Cu2(C14H8O4)2(C10H8N2)2(H2O)2], is a centrosymmetric dimer. The asymmetric unit consitsts of one CuII atom, one 4,4'-dimethyl-2,2'-bipyridine (dbpy) ligand, one [1,1'-biphenyl]-2,2'-dicarboxylate dianion (bpdc2-) and a coordinated water molecule.

The CuII atom is six-coordinated by two N atoms from bpy and four O atoms, three from two bpdc2- anions and one from coordinated H2O, in a distorted octahedron coordination geometry. And it is noteworthy that the two CuII ions in the complex are bridged by two bpdc2- dianions, one is in a bis-monodentate mode whereas the other is in a bis-bidentate mode.

Experimental

The title complound was synthesized hydrothermally in a Teflon-lined autoclave (25 ml) by heating a mixture of H2bpdc (0.2 mmol), dbpy (0.4 mmol) and CuSO4.5H2O (0.2 mmol) in water (10 ml) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms were included in calculated positions, with C—H bond lengths fixed at 0.96 Å (methyl CH3), 0.93Å (aryl group) and O—H = 0.85 Å and were refined in the riding-model approximation. Uiso(H) values were calculated at 1.5 Ueq(C) for methyl groups and 1.2 Ueq(C) otherwise.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. Hydrogen-bond interactions are drawn with dashed ...

Crystal data

[Cu2(C14H8O4)2(C12H12N2)2(H2O)2]F(000) = 2240
Mr = 1109.71Dx = 1.580 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3688 reflections
a = 17.104 (3) Åθ = 2.7–27.3°
b = 15.395 (2) ŵ = 0.98 mm1
c = 18.289 (3) ÅT = 296 K
β = 104.413 (3)°Block, colourless
V = 4664.2 (13) Å30.26 × 0.24 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer4594 independent reflections
Radiation source: fine-focus sealed tube3108 reflections with I > 2σ(I)
graphiteRint = 0.060
[var phi] and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −21→20
Tmin = 0.785, Tmax = 0.814k = −18→12
13512 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 0.93w = 1/[σ2(Fo2) + (0.0562P)2] where P = (Fo2 + 2Fc2)/3
4594 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.87 e Å3
12 restraintsΔρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.13088 (2)0.599652 (19)0.344239 (17)0.05361 (14)
N10.1810 (2)0.5542 (2)0.4686 (2)0.0615 (10)
N20.2592 (2)0.6574 (2)0.39215 (19)0.0516 (9)
O10.11652 (18)0.67905 (18)0.23068 (16)0.0602 (8)
O20.0871 (2)0.74927 (19)0.32546 (17)0.0611 (8)
O30.1387 (2)0.4729 (2)0.2927 (3)0.0977 (12)
O40.0538 (2)0.41826 (19)0.1917 (2)0.0701 (10)
O1W0.00362 (18)0.57274 (19)0.35468 (17)0.0611 (8)
H1WA−0.03260.61000.33650.073*
H1WB−0.01370.52340.33710.073*
C10.0942 (3)0.7474 (3)0.2590 (3)0.0527 (11)
C20.0782 (3)0.8273 (3)0.2111 (2)0.0537 (11)
C30.1193 (3)0.8370 (3)0.1546 (3)0.0677 (14)
H30.15450.79370.14730.081*
C40.1087 (4)0.9095 (3)0.1096 (3)0.0825 (17)
H40.13870.91610.07400.099*
C50.0541 (4)0.9725 (3)0.1166 (3)0.0813 (16)
H50.04551.02050.08480.098*
C60.0121 (3)0.9632 (3)0.1716 (3)0.0685 (14)
H6−0.02451.00600.17690.082*
C70.0232 (3)0.8913 (2)0.2195 (3)0.0540 (11)
C80.0959 (3)0.4138 (3)0.2577 (4)0.0675 (15)
C90.0975 (3)0.3293 (3)0.3005 (3)0.0578 (12)
C100.1638 (4)0.3135 (4)0.3615 (4)0.0935 (19)
H100.20470.35460.37470.112*
C110.1687 (5)0.2361 (5)0.4026 (4)0.114 (2)
H110.21440.22450.44110.137*
C120.1072 (5)0.1780 (4)0.3865 (4)0.101 (2)
H120.10960.12760.41510.121*
C130.0428 (3)0.1938 (3)0.3290 (3)0.0691 (14)
H130.00070.15380.31940.083*
C140.0357 (3)0.2671 (2)0.2827 (2)0.0491 (10)
C150.2960 (3)0.7114 (3)0.3534 (2)0.0619 (12)
H150.27250.71950.30230.074*
C160.3658 (3)0.7551 (3)0.3848 (3)0.0577 (12)
H160.38820.79250.35560.069*
C170.4026 (3)0.7432 (3)0.4598 (2)0.0523 (11)
C180.3652 (3)0.6872 (3)0.4998 (2)0.0514 (11)
H180.38820.67780.55080.062*
C190.2946 (3)0.6456 (2)0.4655 (2)0.0446 (10)
C200.2522 (3)0.5850 (2)0.5076 (3)0.0484 (11)
C210.2842 (3)0.5611 (3)0.5819 (3)0.0575 (12)
H210.33360.58400.60800.069*
C220.2441 (3)0.5040 (3)0.6179 (3)0.0589 (12)
C230.1719 (3)0.4713 (3)0.5762 (3)0.0750 (15)
H230.14350.43110.59740.090*
C240.1423 (3)0.4981 (3)0.5035 (3)0.0761 (15)
H240.09270.47630.47660.091*
C250.4800 (3)0.7895 (3)0.4962 (3)0.0717 (14)
H25A0.47030.85090.49600.108*
H25B0.51960.77740.46850.108*
H25C0.49940.76980.54730.108*
C260.2776 (3)0.4777 (4)0.6985 (3)0.0843 (16)
H26A0.31360.42940.70060.126*
H26B0.23420.46120.72030.126*
H26C0.30660.52560.72630.126*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0639 (3)0.0397 (2)0.0639 (2)−0.00834 (15)0.02867 (18)−0.00204 (16)
N10.068 (3)0.050 (2)0.073 (3)−0.012 (2)0.031 (2)0.012 (2)
N20.062 (2)0.044 (2)0.057 (2)−0.0098 (17)0.0290 (18)0.0006 (17)
O10.074 (2)0.0420 (17)0.073 (2)0.0006 (15)0.0356 (17)−0.0078 (15)
O20.078 (2)0.0476 (17)0.068 (2)0.0056 (15)0.0378 (17)0.0039 (15)
O30.087 (2)0.070 (2)0.150 (3)−0.021 (2)0.057 (2)−0.040 (2)
O40.084 (3)0.0377 (18)0.106 (3)−0.0016 (17)0.058 (2)−0.0019 (19)
O1W0.065 (2)0.0444 (16)0.080 (2)−0.0043 (15)0.0306 (17)−0.0008 (16)
C10.055 (3)0.039 (2)0.073 (3)−0.0036 (19)0.033 (2)0.001 (2)
C20.063 (3)0.042 (2)0.065 (3)−0.007 (2)0.032 (2)−0.002 (2)
C30.082 (4)0.054 (3)0.080 (3)−0.004 (3)0.045 (3)0.003 (3)
C40.113 (5)0.073 (4)0.078 (4)−0.014 (3)0.054 (3)0.009 (3)
C50.115 (5)0.050 (3)0.087 (4)−0.005 (3)0.040 (3)0.017 (3)
C60.088 (4)0.041 (3)0.083 (3)−0.002 (2)0.035 (3)0.008 (2)
C70.063 (3)0.035 (2)0.068 (3)−0.005 (2)0.025 (2)0.000 (2)
C80.062 (3)0.044 (3)0.116 (5)−0.009 (2)0.057 (3)−0.029 (3)
C90.058 (3)0.053 (3)0.069 (3)0.005 (2)0.027 (2)−0.026 (2)
C100.067 (4)0.093 (5)0.117 (5)0.003 (3)0.017 (4)−0.044 (4)
C110.116 (5)0.116 (5)0.093 (4)0.045 (5)−0.008 (4)−0.020 (4)
C120.125 (6)0.089 (5)0.082 (4)0.030 (4)0.013 (4)−0.001 (4)
C130.090 (4)0.052 (3)0.069 (3)0.017 (3)0.026 (3)0.003 (3)
C140.061 (3)0.035 (2)0.058 (3)0.0070 (19)0.0269 (19)−0.0053 (19)
C150.072 (3)0.065 (3)0.055 (3)−0.009 (3)0.029 (2)0.012 (2)
C160.066 (3)0.049 (3)0.068 (3)−0.010 (2)0.037 (3)0.008 (2)
C170.066 (3)0.036 (2)0.065 (3)−0.003 (2)0.036 (2)−0.004 (2)
C180.062 (3)0.047 (2)0.052 (2)−0.003 (2)0.027 (2)−0.003 (2)
C190.056 (3)0.032 (2)0.055 (3)0.0018 (19)0.031 (2)−0.0006 (19)
C200.056 (3)0.036 (2)0.062 (3)0.0020 (19)0.032 (2)0.001 (2)
C210.066 (3)0.052 (3)0.064 (3)−0.001 (2)0.034 (2)0.008 (2)
C220.069 (3)0.054 (3)0.068 (3)0.006 (2)0.042 (3)0.010 (2)
C230.083 (4)0.068 (3)0.087 (4)−0.013 (3)0.045 (3)0.025 (3)
C240.068 (3)0.070 (3)0.096 (4)−0.016 (3)0.030 (3)0.020 (3)
C250.077 (4)0.068 (3)0.077 (3)−0.023 (3)0.033 (3)−0.007 (3)
C260.106 (4)0.083 (4)0.079 (4)−0.003 (3)0.050 (3)0.022 (3)

Geometric parameters (Å, °)

Cd1—O32.186 (4)C10—H100.9300
Cd1—O1W2.270 (3)C11—C121.357 (9)
Cd1—N22.327 (3)C11—H110.9300
Cd1—N12.329 (4)C12—C131.342 (8)
Cd1—O12.369 (3)C12—H120.9300
Cd1—O22.420 (3)C13—C141.397 (6)
N1—C201.335 (6)C13—H130.9300
N1—C241.343 (5)C14—C14i1.482 (8)
N2—C191.339 (5)C15—C161.366 (6)
N2—C151.346 (5)C15—H150.9300
O1—C11.272 (5)C16—C171.371 (6)
O2—C11.252 (5)C16—H160.9300
O3—C81.240 (6)C17—C181.386 (5)
O4—C81.244 (6)C17—C251.505 (6)
O1W—H1WA0.8498C18—C191.373 (6)
O1W—H1WB0.8499C18—H180.9300
C1—C21.495 (6)C19—C201.506 (5)
C2—C31.395 (6)C20—C211.382 (6)
C2—C71.397 (6)C21—C221.380 (6)
C3—C41.372 (6)C21—H210.9300
C3—H30.9300C22—C231.375 (7)
C4—C51.374 (7)C22—C261.499 (6)
C4—H40.9300C23—C241.364 (7)
C5—C61.382 (7)C23—H230.9300
C5—H50.9300C24—H240.9300
C6—C71.394 (6)C25—H25A0.9600
C6—H60.9300C25—H25B0.9600
C7—C7i1.524 (8)C25—H25C0.9600
C8—C91.515 (7)C26—H26A0.9600
C9—C101.400 (8)C26—H26B0.9600
C9—C141.403 (6)C26—H26C0.9600
C10—C111.400 (9)
O3—Cd1—O1W92.06 (12)C9—C10—H10119.9
O3—Cd1—N2110.50 (13)C12—C11—C10120.3 (6)
O1W—Cd1—N2150.70 (11)C12—C11—H11119.8
O3—Cd1—N196.06 (15)C10—C11—H11119.8
O1W—Cd1—N189.48 (12)C13—C12—C11119.4 (6)
N2—Cd1—N170.32 (12)C13—C12—H12120.3
O3—Cd1—O195.00 (13)C11—C12—H12120.3
O1W—Cd1—O1106.00 (11)C12—C13—C14123.5 (6)
N2—Cd1—O190.88 (11)C12—C13—H13118.2
N1—Cd1—O1160.61 (12)C14—C13—H13118.2
O3—Cd1—O2147.01 (15)C13—C14—C9117.6 (4)
O1W—Cd1—O285.21 (10)C13—C14—C14i114.8 (4)
N2—Cd1—O285.37 (12)C9—C14—C14i127.5 (3)
N1—Cd1—O2116.74 (12)N2—C15—C16123.9 (4)
O1—Cd1—O254.80 (9)N2—C15—H15118.0
C20—N1—C24117.8 (4)C16—C15—H15118.0
C20—N1—Cd1118.7 (3)C15—C16—C17119.3 (4)
C24—N1—Cd1123.5 (4)C15—C16—H16120.4
C19—N2—C15117.1 (4)C17—C16—H16120.4
C19—N2—Cd1118.3 (2)C16—C17—C18117.0 (4)
C15—N2—Cd1124.0 (3)C16—C17—C25120.9 (4)
C1—O1—Cd192.7 (2)C18—C17—C25122.1 (4)
C1—O2—Cd190.8 (2)C19—C18—C17121.2 (4)
C8—O3—Cd1141.8 (3)C19—C18—H18119.4
Cd1—O1W—H1WA117.7C17—C18—H18119.4
Cd1—O1W—H1WB112.5N2—C19—C18121.5 (4)
H1WA—O1W—H1WB107.7N2—C19—C20116.1 (4)
O2—C1—O1121.7 (4)C18—C19—C20122.4 (4)
O2—C1—C2120.2 (4)N1—C20—C21121.1 (4)
O1—C1—C2118.1 (4)N1—C20—C19115.9 (4)
C3—C2—C7118.8 (4)C21—C20—C19123.0 (4)
C3—C2—C1118.0 (4)C22—C21—C20121.1 (5)
C7—C2—C1123.1 (4)C22—C21—H21119.5
C4—C3—C2121.1 (5)C20—C21—H21119.5
C4—C3—H3119.5C23—C22—C21116.9 (4)
C2—C3—H3119.5C23—C22—C26121.2 (4)
C3—C4—C5120.7 (5)C21—C22—C26121.9 (5)
C3—C4—H4119.7C24—C23—C22119.7 (4)
C5—C4—H4119.7C24—C23—H23120.2
C4—C5—C6119.0 (5)C22—C23—H23120.2
C4—C5—H5120.5N1—C24—C23123.4 (5)
C6—C5—H5120.5N1—C24—H24118.3
C5—C6—C7121.6 (5)C23—C24—H24118.3
C5—C6—H6119.2C17—C25—H25A109.5
C7—C6—H6119.2C17—C25—H25B109.5
C6—C7—C2118.8 (4)H25A—C25—H25B109.5
C6—C7—C7i116.4 (3)C17—C25—H25C109.5
C2—C7—C7i124.6 (3)H25A—C25—H25C109.5
O3—C8—O4125.9 (6)H25B—C25—H25C109.5
O3—C8—C9115.5 (6)C22—C26—H26A109.5
O4—C8—C9118.7 (4)C22—C26—H26B109.5
C10—C9—C14118.7 (5)H26A—C26—H26B109.5
C10—C9—C8117.9 (5)C22—C26—H26C109.5
C14—C9—C8123.5 (4)H26A—C26—H26C109.5
C11—C10—C9120.3 (6)H26B—C26—H26C109.5
C11—C10—H10119.9
O3—Cd1—N1—C20113.7 (3)C1—C2—C7—C6−179.5 (4)
O1W—Cd1—N1—C20−154.3 (3)C3—C2—C7—C7i−177.3 (5)
N2—Cd1—N1—C204.0 (3)C1—C2—C7—C7i3.9 (8)
O1—Cd1—N1—C20−10.8 (6)Cd1—O3—C8—O469.7 (8)
O2—Cd1—N1—C20−69.9 (3)Cd1—O3—C8—C9−111.2 (6)
O3—Cd1—N1—C24−65.9 (4)O3—C8—C9—C10−21.7 (6)
O1W—Cd1—N1—C2426.1 (4)O4—C8—C9—C10157.6 (4)
N2—Cd1—N1—C24−175.6 (4)O3—C8—C9—C14157.5 (4)
O1—Cd1—N1—C24169.6 (3)O4—C8—C9—C14−23.3 (6)
O2—Cd1—N1—C24110.5 (4)C14—C9—C10—C111.4 (7)
O3—Cd1—N2—C19−95.8 (3)C8—C9—C10—C11−179.4 (5)
O1W—Cd1—N2—C1942.3 (4)C9—C10—C11—C12−3.8 (10)
N1—Cd1—N2—C19−6.6 (3)C10—C11—C12—C132.4 (10)
O1—Cd1—N2—C19168.5 (3)C11—C12—C13—C141.3 (9)
O2—Cd1—N2—C19114.0 (3)C12—C13—C14—C9−3.6 (7)
O3—Cd1—N2—C1593.2 (4)C12—C13—C14—C14i173.3 (5)
O1W—Cd1—N2—C15−128.7 (3)C10—C9—C14—C132.1 (6)
N1—Cd1—N2—C15−177.6 (4)C8—C9—C14—C13−177.0 (4)
O1—Cd1—N2—C15−2.5 (3)C10—C9—C14—C14i−174.3 (5)
O2—Cd1—N2—C15−57.1 (3)C8—C9—C14—C14i6.5 (7)
O3—Cd1—O1—C1166.2 (3)C19—N2—C15—C16−1.0 (7)
O1W—Cd1—O1—C172.6 (3)Cd1—N2—C15—C16170.2 (4)
N2—Cd1—O1—C1−83.1 (3)N2—C15—C16—C171.1 (7)
N1—Cd1—O1—C1−69.2 (4)C15—C16—C17—C18−0.7 (6)
O2—Cd1—O1—C10.6 (2)C15—C16—C17—C25179.5 (4)
O3—Cd1—O2—C1−27.6 (4)C16—C17—C18—C190.2 (6)
O1W—Cd1—O2—C1−114.0 (3)C25—C17—C18—C19−180.0 (4)
N2—Cd1—O2—C193.8 (3)C15—N2—C19—C180.4 (6)
N1—Cd1—O2—C1159.0 (3)Cd1—N2—C19—C18−171.2 (3)
O1—Cd1—O2—C1−0.6 (2)C15—N2—C19—C20179.9 (4)
O1W—Cd1—O3—C822.1 (7)Cd1—N2—C19—C208.3 (4)
N2—Cd1—O3—C8−177.0 (7)C17—C18—C19—N2−0.1 (6)
N1—Cd1—O3—C8111.8 (7)C17—C18—C19—C20−179.5 (4)
O1—Cd1—O3—C8−84.2 (7)C24—N1—C20—C21−1.3 (6)
O2—Cd1—O3—C8−62.3 (8)Cd1—N1—C20—C21179.0 (3)
Cd1—O2—C1—O11.1 (4)C24—N1—C20—C19178.2 (4)
Cd1—O2—C1—C2−177.5 (4)Cd1—N1—C20—C19−1.4 (5)
Cd1—O1—C1—O2−1.1 (4)N2—C19—C20—N1−4.5 (5)
Cd1—O1—C1—C2177.5 (3)C18—C19—C20—N1175.0 (4)
O2—C1—C2—C3151.3 (4)N2—C19—C20—C21175.0 (4)
O1—C1—C2—C3−27.4 (6)C18—C19—C20—C21−5.5 (6)
O2—C1—C2—C7−29.9 (7)N1—C20—C21—C220.8 (6)
O1—C1—C2—C7151.5 (4)C19—C20—C21—C22−178.7 (4)
C7—C2—C3—C42.4 (8)C20—C21—C22—C231.0 (7)
C1—C2—C3—C4−178.7 (5)C20—C21—C22—C26−179.8 (4)
C2—C3—C4—C5−3.3 (8)C21—C22—C23—C24−2.1 (7)
C3—C4—C5—C62.4 (9)C26—C22—C23—C24178.6 (5)
C4—C5—C6—C7−0.7 (9)C20—N1—C24—C230.1 (7)
C5—C6—C7—C2−0.1 (8)Cd1—N1—C24—C23179.7 (4)
C5—C6—C7—C7i176.7 (5)C22—C23—C24—N11.7 (8)
C3—C2—C7—C6−0.7 (7)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.851.782.632 (4)174
O1W—H1WA···O1i0.851.952.782 (4)164

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2107).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jiang, M.-X. & Feng, Y.-L. (2009). Acta Cryst. E65, m654. [PMC free article] [PubMed]
  • Li, F., Zeng, H., Yan, Z. & Li, T. (2009). Acta Cryst. E65, m681. [PMC free article] [PubMed]
  • Rizal, M. R. & Ng, S. W. (2009). Acta Cryst. E65, m1178. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, B.-Y., Xie, T., Lu, S.-J., Xue, B. & Li, W. (2009). Acta Cryst. E65, m856–m857. [PMC free article] [PubMed]
  • Zhang, L. (2009). Acta Cryst. E65, m871–m872. [PMC free article] [PubMed]
  • Zhang, J., Chen, X.-D., Zhang, H.-H. & Sun, B.-W. (2009). Acta Cryst. E65, m1136. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography