PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2876.
Published online 2009 October 28. doi:  10.1107/S1600536809043906
PMCID: PMC2971182

1-(3-Chloro-2-pyrid­yl)-3-methyl-1H-pyrazole-5-carboxylic acid

Abstract

In the title mol­ecule, C10H8ClN3O2, the dihedral angle between the pyridine and pyrazole rings is 64.01 (8)°. In the crystal structure, inter­molecular O—H(...)N hydrogen bonds link mol­ecules, forming extended chains along [001]. These chains are, in turn, linked by weak inter­molecular C—H(...)O inter­actions, forming a two-dimensional network perpendicular to the b axis.

Related literature

The title compound was prepared adventitiously as part of our research program related to metal-organic frameworks. See: Lehn (1995 [triangle]) for background information. For the topologies of metal-organic frameworks, see: Kitakawa et al. (2004 [triangle]); Rosi et al. (2005 [triangle]); Subramanian & Zaworotko (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2876-scheme1.jpg

Experimental

Crystal data

  • C10H8ClN3O2
  • M r = 237.64
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2876-efi1.jpg
  • a = 8.250 (6) Å
  • b = 11.232 (8) Å
  • c = 11.942 (8) Å
  • V = 1106.6 (13) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.33 mm−1
  • T = 296 K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.582, T max = 1.000
  • 5084 measured reflections
  • 1943 independent reflections
  • 1754 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.075
  • S = 1.04
  • 1943 reflections
  • 147 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.13 e Å−3
  • Absolute structure: Flack (1983 [triangle]) 912 Friedel pairs
  • Flack parameter: 0.03 (7)

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]), PLATON (Spek, 2009 [triangle]) and DIAMOND (Brandenburg & Berndt, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043906/lh2933sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043906/lh2933Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support by the Scientific Research Foundation of the Civil Aviation University of China (No. 08CAUC-S01) and the Natural Science Foundation of Tianjin (09JCYBJC04200).

supplementary crystallographic information

Comment

Recently, metal-organic frameworks (MOFs) have attracted great attention (Lehn et al., 1995) because of their intriguing topologies (Subramanian et al., 1994; Kitakawa et al., 2004; Rosi et al., 2005). During our efforts to investigate the assembly of metal-organic coordination frameworks, a new compound, (I), was accidentally generated under hydrothermal conditions and the crystal structure of the title compound (I) is described in this paper. The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the pyridine and pyrazole rings is 64.01 (8)°. The dihedral angle between the mean plane of the pyrazole ring and the plane formed by the atoms C10/O1/O2 is 7.47 (18)°. In the crystal structure, O—H···N hydrogen bonds involving the carboxylic acid O atoms and the 3-chloropyridin-2-yl group N atoms, form one-dimensional chains along [001] (Fig. 2). These chains, are in turn, linked by weak intermolecular C—H···O interactions forming a two-dimensional network perpendicular to the b-axis (Fig. 3).

Experimental

A mixture of Zn(OAc)2.4H2O (21.8 mg, 0.1 mmol), 1-(3-chloropyridin-2-yl)-3- methyl-pyrazole-5-carboxylic acid (23.8 mg, 0.1 mmol) in water (10 ml) was heated at 433 K for 3 d in a sealed Teflon-lined stainless steel vessel (20 ml) under autogenous pressure. After the reaction mixture was slowly cooled to room temperature at a rate of 5 K h-1, pale-yellow lamellar single crystals suitable for X-ray diffraction were produced.

Refinement

Although all H atoms were visible in difference Fourier maps, they were placed in calculated positions, with C-H distances in the range 0.93-0.96Å and an O-H distance of 0.82Å, and included in the final refinement in a riding-model approximation, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O,Cmethyl)

Figures

Fig. 1.
The molecular structure of (I) showing 30% probability ellipsoids.
Fig. 2.
The one-dimensional chain structure of (I), showing O—H···N hydrogen bonds as red dashed lines.
Fig. 3.
Part of the crystal structure with hydrogen bonds shown as dashed lines.

Crystal data

C10H8ClN3O2F(000) = 488
Mr = 237.64Dx = 1.426 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2602 reflections
a = 8.250 (6) Åθ = 3.1–27.5°
b = 11.232 (8) ŵ = 0.33 mm1
c = 11.942 (8) ÅT = 296 K
V = 1106.6 (13) Å3Block, colourless
Z = 40.24 × 0.20 × 0.18 mm

Data collection

Bruker SMART APEXII CCD diffractometer1943 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
graphiteRint = 0.032
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→8
Tmin = 0.582, Tmax = 1.000k = −11→13
5084 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.075w = 1/[σ2(Fo2) + (0.0254P)2 + 0.1923P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1943 reflectionsΔρmax = 0.14 e Å3
147 parametersΔρmin = −0.13 e Å3
1 restraintAbsolute structure: Flack (1983) 912 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.19679 (9)0.18938 (6)0.13597 (6)0.0748 (2)
O10.7978 (2)0.17726 (13)0.1372 (2)0.0622 (5)
O20.6983 (2)0.34151 (14)0.05851 (17)0.0664 (5)
H20.65040.29360.01860.100*
N10.9622 (2)0.18043 (16)0.42451 (15)0.0446 (5)
N20.9738 (2)0.33015 (15)0.29058 (16)0.0414 (4)
N31.0231 (2)0.42331 (17)0.35467 (17)0.0490 (5)
C11.1171 (3)0.1403 (2)0.26170 (19)0.0484 (6)
C21.1532 (3)0.0288 (2)0.3012 (2)0.0606 (7)
H2A1.2178−0.02240.25940.073*
C31.0928 (3)−0.0067 (2)0.4034 (3)0.0625 (7)
H31.1145−0.08230.43140.075*
C40.9994 (3)0.0727 (2)0.4629 (2)0.0544 (6)
H40.96070.05010.53290.065*
C51.0179 (2)0.21361 (19)0.32469 (18)0.0396 (5)
C60.9573 (3)0.5193 (2)0.3074 (2)0.0502 (6)
C70.8657 (3)0.4882 (2)0.2137 (2)0.0508 (6)
H70.80920.53950.16680.061*
C80.8758 (3)0.36675 (19)0.20469 (19)0.0421 (5)
C90.9834 (4)0.6389 (2)0.3575 (3)0.0786 (9)
H9A1.07550.63630.40660.118*
H9B0.88890.66170.39920.118*
H9C1.00260.69580.29910.118*
C100.7890 (3)0.28386 (18)0.1310 (2)0.0435 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0825 (5)0.0840 (5)0.0578 (4)0.0041 (4)0.0284 (4)−0.0126 (4)
O10.0816 (12)0.0439 (10)0.0612 (10)−0.0104 (8)−0.0217 (10)0.0019 (10)
O20.0833 (13)0.0539 (10)0.0618 (12)−0.0028 (9)−0.0294 (11)0.0010 (9)
N10.0460 (11)0.0480 (11)0.0399 (11)−0.0015 (8)0.0012 (9)0.0004 (8)
N20.0477 (11)0.0391 (10)0.0376 (10)−0.0016 (8)0.0009 (9)−0.0041 (8)
N30.0497 (11)0.0477 (11)0.0496 (11)−0.0037 (9)−0.0004 (10)−0.0108 (9)
C10.0471 (13)0.0541 (14)0.0441 (13)0.0011 (11)0.0002 (10)−0.0101 (11)
C20.0564 (14)0.0555 (15)0.0701 (17)0.0155 (12)−0.0069 (14)−0.0158 (13)
C30.0659 (17)0.0482 (13)0.0734 (18)0.0074 (14)−0.0155 (15)0.0052 (13)
C40.0598 (15)0.0549 (16)0.0484 (13)−0.0030 (13)−0.0059 (11)0.0096 (11)
C50.0368 (11)0.0429 (12)0.0391 (12)−0.0007 (9)−0.0034 (9)−0.0053 (9)
C60.0511 (13)0.0416 (13)0.0578 (15)−0.0040 (11)0.0021 (12)−0.0096 (11)
C70.0562 (14)0.0425 (13)0.0539 (13)0.0012 (11)−0.0029 (12)0.0017 (11)
C80.0451 (12)0.0438 (13)0.0373 (11)−0.0019 (10)0.0012 (9)−0.0007 (10)
C90.088 (2)0.0546 (16)0.093 (2)0.0004 (16)−0.0138 (19)−0.0207 (16)
C100.0493 (12)0.0425 (12)0.0386 (11)−0.0034 (10)0.0030 (11)0.0035 (12)

Geometric parameters (Å, °)

Cl1—C11.729 (3)C2—H2A0.9300
O1—C101.202 (2)C3—C41.376 (4)
O2—C101.314 (3)C3—H30.9300
O2—H20.8200C4—H40.9300
N1—C41.330 (3)C6—C71.394 (4)
N1—C51.331 (3)C6—C91.486 (4)
N2—N31.359 (2)C7—C81.371 (3)
N2—C81.369 (3)C7—H70.9300
N2—C51.418 (3)C8—C101.468 (3)
N3—C61.333 (3)C9—H9A0.9600
C1—C21.371 (4)C9—H9B0.9600
C1—C51.383 (3)C9—H9C0.9600
C2—C31.377 (4)
C10—O2—H2109.5C1—C5—N2123.0 (2)
C4—N1—C5118.9 (2)N3—C6—C7111.0 (2)
N3—N2—C8111.56 (16)N3—C6—C9120.1 (2)
N3—N2—C5118.17 (18)C7—C6—C9128.9 (2)
C8—N2—C5130.08 (18)C8—C7—C6106.2 (2)
C6—N3—N2105.21 (18)C8—C7—H7126.9
C2—C1—C5119.0 (2)C6—C7—H7126.9
C2—C1—Cl1120.47 (19)N2—C8—C7106.01 (19)
C5—C1—Cl1120.49 (18)N2—C8—C10123.1 (2)
C1—C2—C3119.4 (2)C7—C8—C10130.4 (2)
C1—C2—H2A120.3C6—C9—H9A109.5
C3—C2—H2A120.3C6—C9—H9B109.5
C4—C3—C2118.2 (2)H9A—C9—H9B109.5
C4—C3—H3120.9C6—C9—H9C109.5
C2—C3—H3120.9H9A—C9—H9C109.5
N1—C4—C3122.7 (3)H9B—C9—H9C109.5
N1—C4—H4118.6O1—C10—O2124.5 (2)
C3—C4—H4118.6O1—C10—C8124.4 (3)
N1—C5—C1121.6 (2)O2—C10—C8111.10 (19)
N1—C5—N2115.29 (19)
C8—N2—N3—C6−0.9 (2)C8—N2—C5—C169.0 (3)
C5—N2—N3—C6−176.4 (2)N2—N3—C6—C70.2 (3)
C5—C1—C2—C3−1.3 (3)N2—N3—C6—C9178.8 (2)
Cl1—C1—C2—C3177.8 (2)N3—C6—C7—C80.6 (3)
C1—C2—C3—C4−0.8 (4)C9—C6—C7—C8−177.9 (3)
C5—N1—C4—C3−0.4 (4)N3—N2—C8—C71.3 (2)
C2—C3—C4—N11.7 (4)C5—N2—C8—C7176.0 (2)
C4—N1—C5—C1−1.9 (3)N3—N2—C8—C10−172.2 (2)
C4—N1—C5—N2−179.44 (19)C5—N2—C8—C102.6 (4)
C2—C1—C5—N12.8 (3)C6—C7—C8—N2−1.1 (2)
Cl1—C1—C5—N1−176.29 (17)C6—C7—C8—C10171.7 (2)
C2—C1—C5—N2−179.9 (2)N2—C8—C10—O1−1.5 (4)
Cl1—C1—C5—N21.0 (3)C7—C8—C10—O1−173.2 (3)
N3—N2—C5—N160.9 (3)N2—C8—C10—O2177.4 (2)
C8—N2—C5—N1−113.5 (3)C7—C8—C10—O25.7 (4)
N3—N2—C5—C1−116.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.932.755 (3)180
C2—H2A···O1ii0.932.363.258 (4)161

Symmetry codes: (i) −x+3/2, y, z−1/2; (ii) x+1/2, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2933).

References

  • Brandenburg, K. & Berndt, M. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kitakawa, S., Kitaura, T. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375. [PubMed]
  • Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives New York: Wiley-VCH.
  • Rosi, N. L., Kim, J., Eddaoudi, M., Chen, B., O’Keeffe, M. & Yaghi, O. M. (2005). J. Am. Chem. Soc.127, 1504–1518. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Subramanian, S. & Zaworotko, M. J. (1994). Coord. Chem. Rev.137, 357–401.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography