PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2735.
Published online 2009 October 17. doi:  10.1107/S1600536809040963
PMCID: PMC2971179

1,3-Bis(hydroxy­meth­yl)benzimidazolin-2-one

Abstract

The title compound, C9H10N2O3, crystallizes with one and a half mol­ecules in the asymmetric unit, one lying on a general position and the other on a twofold rotation axis. The dihedral angle between the two independent benzimidazole ring systems is 18.96 (5)°. In the crystal, mol­ecules are linked into a three-dimensional network by O—H(...)O hydrogen bonding involving N-hydroxy­methyl and carbonyl groups, and C—H(...)O hydrogen bonds.

Related literature

For general background to 2-benzimidazolones, see: Raghu et al. (2005 [triangle]); Porret & Hebermeier (1974 [triangle]); Habermeier (1976 [triangle]); Trask-Morrel et al. (1988 [triangle]); Hammach et al. (2006 [triangle]); Bansal et al. (1981 [triangle]). For related structures, see: Anklekar & Kulkarni (1995 [triangle]); Schwiebert et al. (1996 [triangle]). For the synthesis, see: Zinner & Spangenberg (1958 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2735-scheme1.jpg

Experimental

Crystal data

  • C9H10N2O3
  • M r = 194.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2735-efi1.jpg
  • a = 13.5515 (14) Å
  • b = 11.0848 (12) Å
  • c = 17.6253 (19) Å
  • β = 94.216 (2)°
  • V = 2640.4 (5) Å3
  • Z = 12
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 273 K
  • 0.22 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.976, T max = 0.986
  • 13521 measured reflections
  • 2684 independent reflections
  • 2395 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.110
  • S = 1.10
  • 2684 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040963/ci2925sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040963/ci2925Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor T. N. Guru Row and Miss Brinda Selvaraj, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection.

supplementary crystallographic information

Comment

1,3-Bishydroxyalkylated benzimidazolones are an important class of functionalized benzimidazoles which have been found to be useful as polymer intermediates (Raghu et al., 2005; Porret et al., 1974), fire retardants (Habermeier, 1976), and in curing process in textile industry (Trask-Morrel et al., 1988). Solid state chemistry of hydroxy methylated benzimidazole derivatives leading to thermal extrusion of formaldehyde has been reported (Anklekar et al., 1995) by our group. Design and synthesis of benzimidazolone p38 MAP kinase inhibitors (Hammach et al., 2006) is based on the analysis of their crystal structure data. Benzimidazolones have been reported to crystallize as hydrogen bonded molecular tapes (Schwiebert et al., 1996) which has been used to engineer structures of organic solids. In view of the therapeutic importance of aromatic and hetero aromatic compounds (Bansal et al., 1981) containing N-hydroxymethyl group, we report here the crystal structure of title compound.

The asymmetric unit of the title compound contains one and a half molecules, one lying on a general position and and the other on a twofold rotation axis (Fig.1). Atoms O4 and C13 lie on the twofold rotation axis. The two independent benzimidazole ring systems form a dihedral angle of 18.96 (5)°. There are no intramolecular hydrogen bonding between N-hydroxymethyl and carbonyl groups.

In the crystal, O—H···O hydrogen bonding involving N-hydroxymethyl and carbonyl groups results in the formation of three-dimensional network (Fig.2). In addition, C—H···O hydrogen bonds (Table 1) are observed. This type of intermolecular association is similar to that observed in the structure of benzimidazolone (Schwiebert et al., 1996).

Experimental

The title compound was prepared by following a literature method (Zinner et al., 1958). A mixture of 2-hydroxy benzimidazole (13.4 g, 0.01 M) and 37% formalin (30 ml, 1M) was refluxed for 30 minutes in presence of 100 ml water. The solid product formed was filtered and single crystals were grown by slow evaporation in water (yield 92%, m.p. 433 K). Spectral data IRνCO = 1700 cm-1, νOH = 3300 cm-1. 1H NMR -(CDCl3+DMSO-d6)δ p.p.m. - 5.3(4H, d, CH2) appeared as singlet on D2O exchange, 6.2(2H, t, OH) vanished on D2O exchange, 7.4–7.8 (4H, m, Ar-H). Mass m/z = 134 (100%).

Refinement

H atoms were positioned at calculated positions [O-H = 0.82 Å and C-H = 0.93–0.97 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing of the molecules viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C9H10N2O3F(000) = 1224
Mr = 194.19Dx = 1.465 Mg m3
Monoclinic, C2/cMelting point: 433 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 13.5515 (14) ÅCell parameters from 2684 reflections
b = 11.0848 (12) Åθ = 2.3–26.4°
c = 17.6253 (19) ŵ = 0.11 mm1
β = 94.216 (2)°T = 273 K
V = 2640.4 (5) Å3Plate, white
Z = 120.22 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer2684 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
graphiteRint = 0.025
ω and [var phi] scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −16→16
Tmin = 0.976, Tmax = 0.986k = −13→13
13521 measured reflectionsl = −22→22

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0486P)2 + 1.5821P] where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.36019 (9)0.44213 (11)0.19000 (7)0.0555 (3)
H1A0.40090.39840.21310.083*
O20.51268 (9)0.85515 (11)−0.04107 (7)0.0560 (3)
H2A0.45970.8565−0.06670.084*
O30.32846 (8)0.69395 (11)0.07135 (7)0.0525 (3)
N10.44553 (9)0.54147 (11)0.09507 (7)0.0390 (3)
N20.49663 (9)0.72131 (11)0.06132 (7)0.0420 (3)
C10.61458 (12)0.44272 (15)0.11034 (9)0.0469 (4)
H10.59320.36650.12380.056*
C20.71420 (13)0.46756 (18)0.10526 (10)0.0568 (5)
H20.76040.40630.11460.068*
C30.74639 (13)0.5819 (2)0.08647 (10)0.0582 (5)
H30.81380.59630.08470.070*
C40.67978 (12)0.67501 (17)0.07028 (9)0.0499 (4)
H40.70120.75160.05760.060*
C50.58057 (11)0.64950 (13)0.07380 (8)0.0388 (3)
C60.54853 (11)0.53545 (13)0.09463 (8)0.0372 (3)
C70.41401 (11)0.65604 (14)0.07545 (8)0.0398 (3)
C80.49544 (14)0.84582 (14)0.03582 (10)0.0511 (4)
H8A0.43170.88130.04400.061*
H8B0.54580.89090.06580.061*
C90.37880 (12)0.44495 (14)0.11304 (9)0.0456 (4)
H9A0.31660.45490.08270.055*
H9B0.40720.36840.09930.055*
O40.50000.27510 (13)0.25000.0467 (4)
O50.33811 (9)0.12882 (13)0.36950 (7)0.0628 (4)
H5A0.28480.14620.38580.094*
N30.42148 (9)0.09011 (11)0.26254 (7)0.0396 (3)
C100.45046 (15)−0.24348 (15)0.25741 (9)0.0553 (5)
H100.4179−0.31670.26170.066*
C110.39872 (13)−0.13699 (15)0.26601 (9)0.0487 (4)
H110.3325−0.13700.27650.058*
C120.45049 (11)−0.03066 (13)0.25817 (8)0.0385 (3)
C130.50000.16353 (19)0.25000.0379 (4)
C140.32941 (11)0.13248 (16)0.28957 (9)0.0468 (4)
H14A0.31620.21430.27220.056*
H14B0.27520.08140.27010.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0523 (7)0.0567 (7)0.0602 (7)0.0107 (6)0.0216 (5)0.0184 (6)
O20.0488 (7)0.0629 (8)0.0571 (7)0.0001 (6)0.0090 (5)0.0226 (6)
O30.0415 (6)0.0568 (7)0.0603 (7)0.0122 (5)0.0109 (5)0.0124 (5)
N10.0370 (6)0.0371 (6)0.0436 (7)0.0016 (5)0.0077 (5)0.0042 (5)
N20.0454 (7)0.0366 (7)0.0451 (7)0.0036 (5)0.0122 (5)0.0077 (5)
C10.0514 (9)0.0423 (8)0.0477 (9)0.0097 (7)0.0092 (7)0.0043 (7)
C20.0463 (10)0.0675 (12)0.0574 (10)0.0190 (8)0.0094 (8)0.0066 (9)
C30.0382 (9)0.0814 (13)0.0561 (10)0.0022 (8)0.0110 (7)0.0020 (9)
C40.0479 (9)0.0547 (10)0.0486 (9)−0.0070 (7)0.0143 (7)0.0017 (7)
C50.0424 (8)0.0402 (8)0.0349 (7)0.0031 (6)0.0095 (6)0.0012 (6)
C60.0392 (8)0.0397 (8)0.0335 (7)0.0020 (6)0.0079 (5)−0.0001 (6)
C70.0419 (8)0.0417 (8)0.0366 (7)0.0048 (6)0.0084 (6)0.0045 (6)
C80.0629 (11)0.0366 (8)0.0547 (10)0.0025 (7)0.0103 (8)0.0081 (7)
C90.0437 (8)0.0404 (8)0.0528 (9)−0.0040 (7)0.0052 (7)0.0027 (7)
O40.0426 (8)0.0344 (8)0.0635 (10)0.0000.0068 (7)0.000
O50.0400 (6)0.0918 (10)0.0575 (7)0.0004 (6)0.0105 (5)−0.0143 (7)
N30.0328 (6)0.0377 (7)0.0490 (7)−0.0017 (5)0.0069 (5)−0.0008 (5)
C100.0860 (13)0.0370 (8)0.0426 (9)−0.0116 (8)0.0021 (8)0.0014 (7)
C110.0562 (10)0.0459 (9)0.0439 (8)−0.0124 (7)0.0032 (7)0.0019 (7)
C120.0416 (8)0.0376 (8)0.0363 (7)−0.0008 (6)0.0020 (6)0.0000 (6)
C130.0346 (10)0.0381 (11)0.0410 (11)0.0000.0025 (8)0.000
C140.0329 (8)0.0504 (9)0.0575 (10)0.0001 (7)0.0052 (6)−0.0001 (7)

Geometric parameters (Å, °)

O1—C91.3981 (19)C5—C61.395 (2)
O1—H1A0.82C8—H8A0.97
O2—C81.396 (2)C8—H8B0.97
O2—H2A0.82C9—H9A0.97
O3—C71.2304 (18)C9—H9B0.97
N1—C71.3759 (19)O4—C131.237 (3)
N1—C61.3980 (19)O5—C141.406 (2)
N1—C91.4509 (19)O5—H5A0.82
N2—C71.371 (2)N3—C131.3704 (17)
N2—C51.3925 (19)N3—C121.3990 (19)
N2—C81.451 (2)N3—C141.4462 (19)
C1—C61.378 (2)C10—C10i1.387 (4)
C1—C21.387 (2)C10—C111.387 (3)
C1—H10.93C11—C121.384 (2)
C2—C31.388 (3)C11—H110.93
C2—H20.93C12—C12i1.393 (3)
C3—C41.387 (3)C13—N3i1.3704 (17)
C3—H30.93C14—H14A0.97
C4—C51.380 (2)C14—H14B0.97
C4—H40.93
C9—O1—H1A109.4O2—C8—H8B109.2
C8—O2—H2A109.5N2—C8—H8B109.2
C7—N1—C6109.53 (12)H8A—C8—H8B107.9
C7—N1—C9123.27 (13)O1—C9—N1112.84 (13)
C6—N1—C9127.20 (12)O1—C9—H9A109.0
C7—N2—C5109.76 (12)N1—C9—H9A109.0
C7—N2—C8124.58 (14)O1—C9—H9B109.0
C5—N2—C8125.66 (13)N1—C9—H9B109.0
C6—C1—C2117.39 (16)H9A—C9—H9B107.8
C6—C1—H1121.3C14—O5—H5A109.5
C2—C1—H1121.3C13—N3—C12109.55 (12)
C1—C2—C3121.40 (16)C13—N3—C14124.00 (13)
C1—C2—H2119.3C12—N3—C14125.57 (13)
C3—C2—H2119.3C10i—C10—C11121.66 (10)
C4—C3—C2121.16 (16)C10i—C10—H10119.2
C4—C3—H3119.4C11—C10—H10119.2
C2—C3—H3119.4C12—C11—C10116.74 (16)
C5—C4—C3117.36 (16)C12—C11—H11121.6
C5—C4—H4121.3C10—C11—H11121.6
C3—C4—H4121.3C11—C12—C12i121.59 (10)
C4—C5—N2131.54 (15)C11—C12—N3131.53 (14)
C4—C5—C6121.39 (14)C12i—C12—N3106.88 (8)
N2—C5—C6107.05 (13)O4—C13—N3126.43 (9)
C1—C6—C5121.26 (14)O4—C13—N3i126.43 (9)
C1—C6—N1131.97 (14)N3—C13—N3i107.14 (18)
C5—C6—N1106.76 (12)O5—C14—N3108.05 (13)
O3—C7—N2125.99 (14)O5—C14—H14A110.1
O3—C7—N1127.14 (14)N3—C14—H14A110.1
N2—C7—N1106.87 (12)O5—C14—H14B110.1
O2—C8—N2111.86 (14)N3—C14—H14B110.1
O2—C8—H8A109.2H14A—C14—H14B108.4
N2—C8—H8A109.2
C6—C1—C2—C31.2 (3)C8—N2—C7—N1177.40 (14)
C1—C2—C3—C4−1.5 (3)C6—N1—C7—O3−178.71 (15)
C2—C3—C4—C50.1 (3)C9—N1—C7—O31.2 (2)
C3—C4—C5—N2179.76 (16)C6—N1—C7—N21.10 (16)
C3—C4—C5—C61.6 (2)C9—N1—C7—N2−178.97 (13)
C7—N2—C5—C4−177.04 (16)C7—N2—C8—O2−105.28 (17)
C8—N2—C5—C44.1 (3)C5—N2—C8—O273.5 (2)
C7—N2—C5—C61.36 (16)C7—N1—C9—O1−88.27 (17)
C8—N2—C5—C6−177.55 (14)C6—N1—C9—O191.64 (17)
C2—C1—C6—C50.5 (2)C10i—C10—C11—C120.8 (3)
C2—C1—C6—N1−179.32 (15)C10—C11—C12—C12i0.5 (3)
C4—C5—C6—C1−1.9 (2)C10—C11—C12—N3179.38 (15)
N2—C5—C6—C1179.46 (14)C13—N3—C12—C11−179.51 (14)
C4—C5—C6—N1177.94 (13)C14—N3—C12—C1110.9 (3)
N2—C5—C6—N1−0.65 (16)C13—N3—C12—C12i−0.50 (18)
C7—N1—C6—C1179.60 (16)C14—N3—C12—C12i−170.07 (15)
C9—N1—C6—C1−0.3 (3)C12—N3—C13—O4−179.81 (7)
C7—N1—C6—C5−0.27 (16)C14—N3—C13—O4−10.04 (16)
C9—N1—C6—C5179.81 (14)C12—N3—C13—N3i0.19 (7)
C5—N2—C7—O3178.30 (15)C14—N3—C13—N3i169.96 (16)
C8—N2—C7—O3−2.8 (2)C13—N3—C14—O5−89.75 (16)
C5—N2—C7—N1−1.52 (16)C12—N3—C14—O578.38 (18)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O40.821.992.8003 (16)169
O2—H2A···O5ii0.821.932.7503 (18)176
O5—H5A···O3iii0.821.842.6551 (17)175
C3—H3···O2iv0.932.583.489 (2)164
C14—H14B···O1iii0.972.543.364 (2)143

Symmetry codes: (ii) x, −y+1, z−1/2; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x+3/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2925).

References

  • Anklekar, K. Y. & Kulkarni, M. V. (1995). Indian J. Chem. Sect. B, 34, 677–678.
  • Bansal, P. C., Ian, H., Pitman, I. H. & Higuchi, T. (1981). J. Pharm. Sci.70, 855–857. [PubMed]
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Habermeier, J. (1976). Ger. Offen. 2 453 450.
  • Hammach, A., Barbosa, A., Gaenzler, F. C., Fadra, T., Goldberg, D., Hao, M.-H., Kroe, R. R., Liu, P., Qian, K. C., Ralph, M., Sarko, C., Soleymanzadeh, F. & Moss, N. (2006). Bioorg. Med. Chem. Lett.16, 6316–6320. [PubMed]
  • Porret, D. & Hebermeier, J. (1974). Ger. Offen. 2 342 432.
  • Raghu, A. V., Gadaginamath, G. S. & Amminabhavi, T. M. (2005). J. Appl. Polym. Sci.98, 2236–2244.
  • Schwiebert, K. E., Chin, D. N., MacDonald, J. C. & Whitesides, G. M. (1996). J. Am. Chem. Soc.118, 4018–4029.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Trask-Morrel, B. J., Franklin, W. E. & Liu, R. H. (1988). Text. Chem. Color, pp. 20–21.
  • Zinner, H. & Spangenberg, B. (1958). Chem. Ber.91, 1432–1437.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography