PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1363.
Published online 2009 October 17. doi:  10.1107/S1600536809040951
PMCID: PMC2971176

[μ-4-Benzoyl-1-(1-oxido-2-naphthyl­carbon­yl)thio­semicarbazidato(4−)]bis­[pyridine­copper(II)]

Abstract

In the title dinuclear complex, [Cu2(C19H11N3O3S)(C5H5N)2], the two CuII centers have different coordination environments, viz. N2OS and N2O2, each exhibiting a distorted square-planar geometry. π–π inter­actions between the aromatic rings of neighbouring complexes [centroid–centroid distance = 3.856 (5) Å] link pairs of mol­ecules into centrosymmetric dimers, which are further packed into stacks along the b axis with relatively short Cu(...)Cu separations of 3.482 (1) Å. Weak inter­molecular C—H(...)N hydrogen bonds help to consolidate the crystal packing.

Related literature

For details of the synthesis, see: Chen et al. (2007 [triangle]). For pharmacological properties of complexes of acyl­thio­semicarbazides, see: Wei et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1363-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C19H11N3O3S)(C5H5N)2]
  • M r = 646.65
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1363-efi1.jpg
  • a = 12.7621 (14) Å
  • b = 9.2609 (11) Å
  • c = 21.683 (2) Å
  • β = 92.168 (2)°
  • V = 2560.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.79 mm−1
  • T = 298 K
  • 0.48 × 0.42 × 0.21 mm

Data collection

  • Bruker SMART 1000 diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.481, T max = 0.706
  • 12450 measured reflections
  • 4504 independent reflections
  • 2532 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.161
  • S = 1.00
  • 4504 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040951/cv2616sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040951/cv2616Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the National Natural Science Foundation of China for financial support (grant No. 20671048).

supplementary crystallographic information

Comment

Acylthiosemicarbazides possess strong coordination ability, and their complexes exhibit various biological activities (Wei et al., 1995). Herewith we present the crystal structure of the title compound (I) - new dinuclear complex of naphthalenecarbothiosemicarbazide.

In (I) (Fig. 1), two Cu centers have different coordination environments - N2OS and N2O2, respectively, exhibiting distorted square-planar geometry each. The Cu1 atom is coordinated with one phenolate oxygen, one nitrogen atom of pyridine, one sulfur atom and one hydrazide nitrogen atom, forming five-membered and six-membered chelating rings. The Cu2 atom is coordinated with two carbonyl oxygen atoms, one nitrogen atom of pyridine and one hydrazide nitrogen atom, forming five-membered and six-membered chelating rings too. π–π interactions between the aromatic rings of neighbouring complexes [centroid-to centroid distance = 3.856 (5) Å] link two molecules into centrosymmetric dimers, which are further packed into stacks along b axis with relatively short Cu···Cu separation of 3.482 (1) Å. Weak intermolecular C—H···N hydrogen bonds (Table 1) help to consolidate the crystal packing.

Experimental

1.406 g (10 mmol) of benzoyl chloride was added dropwise to a stirred solution of acetonitrile (50 ml) containing 0.981 g (10 mmol) of potassium thiocyanate. Stirring was continued for 1 h, and the solution was slowly warmed to ambient temperature. Then 1.68 g (10 mmol) of 1-hydroxy-2-naphthalenecarbohydrazide was added to the mixture, with stirring being continued for 5 h. After staying for overnight at refrigerator, the resulting yellow precipitate was filtered and rinsed with diethyl ether, then dried in vacuo, 87% yield. m.p. 225–227 C. The solution of CuNO3(0.04 g, 0.2 mmol) in pyridine(10 ml) was added to the mixture of N-benzoyl-1-hydroxy-2-naphthalenecarbothiosemicarbazide (0.073 g, 0.2 mmol)and sodium methylate(0.0324 g,0.6 mmol)in DMSO(10 ml). A green solution was obtained after refluxing for 3 h. After filtrated,dimethyl ether was slowly diffused into the filtrate, then crystals suitable for X-ray diffraction were obtained after two weeks (m.p. >400 K) (Chen et al. 2007) Elemental analysis calculated for Cu2C29H21N5O3S1: C, 53.64; H, 3.29; N, 9.43. Found (%): C, 53.86; H, 3.27; N, 10.83.

Refinement

The C-bound H atoms were geometrically positioned (C—H = 0.93 Å), and were refined as riding, with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Crystal data

[Cu2(C19H11N3O3S)(C5H5N)2]F(000) = 1312
Mr = 646.65Dx = 1.677 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.7621 (14) ÅCell parameters from 2465 reflections
b = 9.2609 (11) Åθ = 2.4–22.0°
c = 21.683 (2) ŵ = 1.79 mm1
β = 92.168 (2)°T = 298 K
V = 2560.9 (5) Å3Block, green
Z = 40.48 × 0.42 × 0.21 mm

Data collection

Bruker SMART 1000 diffractometer4504 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
graphiteRint = 0.064
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.481, Tmax = 0.706k = −9→11
12450 measured reflectionsl = −22→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0835P)2], where P = (Fo2 + 2Fc2)/3
4504 reflections(Δ/σ)max = 0.001
361 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = −0.42 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.28704 (5)0.20605 (8)1.04261 (3)0.0436 (3)
Cu2−0.01899 (6)0.36338 (9)0.94557 (3)0.0496 (3)
S10.33285 (12)0.34418 (19)0.96271 (7)0.0508 (5)
N10.1252 (4)0.3405 (5)0.9676 (2)0.0431 (12)
N20.1458 (4)0.2438 (5)1.0159 (2)0.0416 (12)
N30.1971 (4)0.4823 (5)0.8891 (2)0.0418 (12)
N40.4361 (4)0.1750 (5)1.0747 (2)0.0432 (12)
N5−0.1717 (4)0.3765 (6)0.9268 (2)0.0469 (13)
O10.0142 (3)0.4972 (5)0.88313 (19)0.0540 (12)
O2−0.0331 (3)0.2309 (5)1.0121 (2)0.0585 (12)
O30.2433 (3)0.0804 (5)1.10597 (19)0.0526 (11)
C10.2062 (5)0.3912 (6)0.9385 (3)0.0415 (15)
C20.1062 (5)0.5270 (7)0.8657 (3)0.0446 (15)
C30.1091 (5)0.6286 (6)0.8125 (3)0.0407 (14)
C40.0197 (5)0.6999 (8)0.7931 (3)0.0595 (19)
H4−0.04290.68150.81220.071*
C50.0213 (6)0.7982 (8)0.7456 (3)0.067 (2)
H5−0.03960.84740.73370.080*
C60.1120 (5)0.8241 (7)0.7158 (3)0.0542 (18)
H60.11350.89100.68390.065*
C70.2003 (5)0.7498 (8)0.7339 (3)0.0561 (18)
H70.26200.76520.71340.067*
C80.1998 (5)0.6532 (7)0.7815 (3)0.0527 (17)
H80.26090.60380.79310.063*
C90.0565 (5)0.1886 (7)1.0356 (3)0.0488 (16)
C100.1489 (5)0.0355 (7)1.1163 (3)0.0459 (16)
C110.0576 (5)0.0804 (7)1.0840 (3)0.0466 (16)
C12−0.0399 (5)0.0174 (8)1.0983 (3)0.066 (2)
H12−0.09990.04671.07600.079*
C13−0.0496 (6)−0.0831 (9)1.1429 (3)0.070 (2)
H13−0.1151−0.12151.15070.084*
C140.0390 (5)−0.1290 (7)1.1771 (3)0.0552 (18)
C150.1381 (5)−0.0719 (7)1.1649 (3)0.0460 (16)
C160.2265 (5)−0.1219 (7)1.1990 (3)0.0511 (17)
H160.2925−0.08561.19080.061*
C170.2165 (6)−0.2236 (8)1.2443 (3)0.0607 (19)
H170.2755−0.25701.26650.073*
C180.1178 (6)−0.2766 (8)1.2570 (3)0.064 (2)
H180.1110−0.34311.28880.077*
C190.0320 (6)−0.2337 (8)1.2244 (3)0.0615 (19)
H19−0.0328−0.27331.23290.074*
C200.4648 (6)0.0479 (8)1.0975 (3)0.0620 (19)
H200.4152−0.02571.09780.074*
C210.5641 (6)0.0195 (9)1.1207 (4)0.075 (2)
H210.5816−0.07231.13510.090*
C220.6363 (6)0.1260 (9)1.1223 (3)0.071 (2)
H220.70400.10891.13800.085*
C230.6084 (5)0.2589 (8)1.1005 (3)0.0593 (19)
H230.65620.33471.10190.071*
C240.5086 (5)0.2789 (7)1.0765 (3)0.0497 (16)
H240.49050.36931.06060.060*
C25−0.2383 (5)0.2922 (8)0.9581 (3)0.0553 (18)
H25−0.21140.23300.98960.066*
C26−0.3436 (5)0.2916 (8)0.9450 (3)0.060 (2)
H26−0.38740.23130.96670.072*
C27−0.3842 (5)0.3799 (9)0.8998 (3)0.063 (2)
H27−0.45590.38050.89040.075*
C28−0.3189 (5)0.4669 (9)0.8687 (3)0.065 (2)
H28−0.34470.52900.83800.078*
C29−0.2128 (5)0.4602 (8)0.8839 (3)0.0571 (18)
H29−0.16790.51900.86230.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0386 (4)0.0450 (5)0.0473 (5)−0.0080 (4)0.0043 (3)0.0035 (4)
Cu20.0350 (4)0.0602 (6)0.0536 (5)−0.0116 (4)0.0012 (4)0.0081 (4)
S10.0370 (9)0.0626 (12)0.0528 (10)−0.0031 (8)0.0045 (7)0.0147 (8)
N10.038 (3)0.044 (3)0.047 (3)−0.012 (2)−0.001 (2)0.008 (2)
N20.039 (3)0.051 (3)0.035 (3)−0.010 (2)0.000 (2)0.011 (2)
N30.036 (3)0.046 (3)0.043 (3)−0.005 (2)0.000 (2)0.009 (2)
N40.043 (3)0.036 (3)0.050 (3)−0.003 (2)0.002 (2)0.005 (2)
N50.038 (3)0.056 (4)0.046 (3)−0.006 (3)−0.004 (3)−0.005 (3)
O10.033 (2)0.065 (3)0.063 (3)−0.012 (2)−0.001 (2)0.015 (2)
O20.042 (3)0.075 (3)0.059 (3)−0.012 (2)0.001 (2)0.017 (2)
O30.038 (2)0.061 (3)0.059 (3)−0.009 (2)0.003 (2)0.014 (2)
C10.043 (4)0.038 (4)0.043 (4)−0.004 (3)0.000 (3)−0.005 (3)
C20.039 (4)0.048 (4)0.047 (4)−0.009 (3)0.001 (3)−0.004 (3)
C30.038 (3)0.042 (4)0.041 (3)−0.006 (3)−0.005 (3)0.004 (3)
C40.041 (4)0.080 (5)0.058 (4)−0.003 (4)0.006 (3)0.011 (4)
C50.050 (4)0.082 (6)0.069 (5)0.011 (4)−0.003 (4)0.019 (4)
C60.060 (5)0.055 (5)0.048 (4)−0.010 (4)−0.002 (3)0.011 (3)
C70.044 (4)0.068 (5)0.056 (4)−0.001 (4)0.007 (3)0.009 (4)
C80.046 (4)0.059 (5)0.053 (4)0.001 (3)−0.001 (3)0.006 (3)
C90.042 (4)0.060 (5)0.045 (4)−0.012 (3)0.006 (3)−0.003 (3)
C100.044 (4)0.052 (4)0.042 (4)−0.013 (3)0.003 (3)−0.005 (3)
C110.044 (4)0.053 (4)0.043 (4)−0.015 (3)0.009 (3)0.005 (3)
C120.044 (4)0.087 (6)0.067 (5)−0.021 (4)0.003 (3)0.024 (4)
C130.052 (5)0.091 (6)0.069 (5)−0.032 (4)0.015 (4)0.020 (4)
C140.054 (4)0.053 (5)0.059 (4)−0.016 (4)0.008 (4)0.010 (3)
C150.060 (4)0.042 (4)0.037 (4)−0.007 (3)0.013 (3)−0.003 (3)
C160.048 (4)0.056 (5)0.050 (4)−0.005 (3)0.008 (3)0.005 (3)
C170.070 (5)0.058 (5)0.054 (4)0.012 (4)0.006 (4)0.002 (4)
C180.079 (6)0.057 (5)0.057 (5)0.000 (4)0.026 (4)0.012 (4)
C190.060 (5)0.061 (5)0.065 (5)−0.016 (4)0.011 (4)0.008 (4)
C200.061 (5)0.049 (5)0.075 (5)−0.008 (4)−0.001 (4)0.008 (4)
C210.067 (5)0.050 (5)0.107 (6)0.010 (4)−0.005 (5)0.021 (4)
C220.047 (4)0.079 (6)0.087 (6)0.007 (4)−0.005 (4)0.006 (5)
C230.048 (4)0.061 (5)0.068 (5)−0.016 (4)−0.005 (4)0.006 (4)
C240.045 (4)0.046 (4)0.059 (4)−0.003 (3)0.011 (3)0.011 (3)
C250.045 (4)0.072 (5)0.050 (4)−0.013 (4)0.011 (3)−0.003 (4)
C260.048 (4)0.081 (6)0.053 (4)−0.022 (4)0.016 (3)−0.011 (4)
C270.039 (4)0.088 (6)0.062 (5)−0.014 (4)0.006 (4)−0.022 (4)
C280.036 (4)0.093 (6)0.067 (5)−0.010 (4)−0.005 (4)−0.009 (4)
C290.039 (4)0.073 (5)0.060 (4)−0.010 (4)0.005 (3)−0.002 (4)

Geometric parameters (Å, °)

Cu1—O31.900 (4)C10—C151.460 (8)
Cu1—N21.905 (5)C11—C121.420 (8)
Cu1—N42.022 (5)C12—C131.350 (9)
Cu1—S12.2487 (17)C12—H120.9300
Cu2—O11.895 (4)C13—C141.395 (9)
Cu2—N11.896 (5)C13—H130.9300
Cu2—O21.908 (4)C14—C151.405 (8)
Cu2—N51.980 (5)C14—C191.415 (9)
S1—C11.736 (6)C15—C161.404 (8)
N1—C11.317 (7)C16—C171.370 (9)
N1—N21.395 (6)C16—H160.9300
N2—C91.333 (7)C17—C181.390 (9)
N3—C21.314 (7)C17—H170.9300
N3—C11.366 (7)C18—C191.341 (9)
N4—C201.322 (8)C18—H180.9300
N4—C241.335 (7)C19—H190.9300
N5—C291.305 (8)C20—C211.372 (9)
N5—C251.355 (8)C20—H200.9300
O1—C21.278 (7)C21—C221.349 (10)
O2—C91.295 (7)C21—H210.9300
O3—C101.302 (7)C22—C231.361 (10)
C2—C31.490 (8)C22—H220.9300
C3—C41.372 (8)C23—C241.371 (8)
C3—C81.379 (8)C23—H230.9300
C4—C51.375 (9)C24—H240.9300
C4—H40.9300C25—C261.363 (9)
C5—C61.368 (9)C25—H250.9300
C5—H50.9300C26—C271.364 (10)
C6—C71.365 (8)C26—H260.9300
C6—H60.9300C27—C281.356 (9)
C7—C81.367 (9)C27—H270.9300
C7—H70.9300C28—C291.384 (8)
C8—H80.9300C28—H280.9300
C9—C111.451 (8)C29—H290.9300
C10—C111.400 (8)
O3—Cu1—N291.84 (18)C11—C10—C15117.6 (5)
O3—Cu1—N487.81 (18)C10—C11—C12119.3 (6)
N2—Cu1—N4176.7 (2)C10—C11—C9123.5 (5)
O3—Cu1—S1175.88 (14)C12—C11—C9117.2 (6)
N2—Cu1—S186.09 (14)C13—C12—C11122.9 (6)
N4—Cu1—S194.46 (14)C13—C12—H12118.5
O1—Cu2—N190.70 (19)C11—C12—H12118.5
O1—Cu2—O2172.29 (18)C12—C13—C14119.8 (6)
N1—Cu2—O281.73 (19)C12—C13—H13120.1
O1—Cu2—N593.3 (2)C14—C13—H13120.1
N1—Cu2—N5176.0 (2)C13—C14—C15120.1 (6)
O2—Cu2—N594.3 (2)C13—C14—C19121.5 (6)
C1—S1—Cu196.3 (2)C15—C14—C19118.4 (6)
C1—N1—N2117.4 (5)C16—C15—C14119.2 (6)
C1—N1—Cu2127.7 (4)C16—C15—C10120.6 (6)
N2—N1—Cu2114.4 (3)C14—C15—C10120.2 (6)
C9—N2—N1110.4 (5)C17—C16—C15120.6 (6)
C9—N2—Cu1129.9 (4)C17—C16—H16119.7
N1—N2—Cu1119.7 (3)C15—C16—H16119.7
C2—N3—C1123.0 (5)C16—C17—C18119.6 (7)
C20—N4—C24116.7 (6)C16—C17—H17120.2
C20—N4—Cu1119.9 (4)C18—C17—H17120.2
C24—N4—Cu1123.3 (4)C19—C18—C17121.2 (7)
C29—N5—C25117.2 (6)C19—C18—H18119.4
C29—N5—Cu2123.2 (4)C17—C18—H18119.4
C25—N5—Cu2119.5 (5)C18—C19—C14120.9 (7)
C2—O1—Cu2125.8 (4)C18—C19—H19119.6
C9—O2—Cu2112.6 (4)C14—C19—H19119.6
C10—O3—Cu1128.3 (4)N4—C20—C21123.1 (7)
N1—C1—N3123.4 (5)N4—C20—H20118.4
N1—C1—S1120.3 (5)C21—C20—H20118.4
N3—C1—S1116.3 (4)C22—C21—C20119.4 (7)
O1—C2—N3128.8 (6)C22—C21—H21120.3
O1—C2—C3114.5 (5)C20—C21—H21120.3
N3—C2—C3116.7 (5)C21—C22—C23118.8 (7)
C4—C3—C8118.3 (6)C21—C22—H22120.6
C4—C3—C2119.8 (6)C23—C22—H22120.6
C8—C3—C2121.8 (6)C22—C23—C24118.8 (7)
C3—C4—C5120.9 (6)C22—C23—H23120.6
C3—C4—H4119.6C24—C23—H23120.6
C5—C4—H4119.6N4—C24—C23123.1 (6)
C6—C5—C4120.5 (7)N4—C24—H24118.4
C6—C5—H5119.8C23—C24—H24118.4
C4—C5—H5119.8N5—C25—C26122.0 (7)
C7—C6—C5118.7 (6)N5—C25—H25119.0
C7—C6—H6120.7C26—C25—H25119.0
C5—C6—H6120.7C25—C26—C27119.5 (7)
C6—C7—C8121.4 (6)C25—C26—H26120.2
C6—C7—H7119.3C27—C26—H26120.2
C8—C7—H7119.3C28—C27—C26119.3 (7)
C7—C8—C3120.3 (6)C28—C27—H27120.3
C7—C8—H8119.9C26—C27—H27120.3
C3—C8—H8119.9C27—C28—C29117.9 (7)
O2—C9—N2120.7 (6)C27—C28—H28121.0
O2—C9—C11118.5 (5)C29—C28—H28121.0
N2—C9—C11120.8 (6)N5—C29—C28124.0 (7)
O3—C10—C11125.2 (6)N5—C29—H29118.0
O3—C10—C15117.1 (6)C28—C29—H29118.0
O3—Cu1—S1—C163.1 (19)C3—C4—C5—C61.7 (11)
N2—Cu1—S1—C13.2 (2)C4—C5—C6—C70.4 (11)
N4—Cu1—S1—C1−173.5 (2)C5—C6—C7—C8−1.3 (11)
O1—Cu2—N1—C1−8.4 (5)C6—C7—C8—C30.0 (11)
O2—Cu2—N1—C1173.0 (6)C4—C3—C8—C72.0 (10)
N5—Cu2—N1—C1167 (3)C2—C3—C8—C7−178.4 (6)
O1—Cu2—N1—N2−179.8 (4)Cu2—O2—C9—N24.1 (8)
O2—Cu2—N1—N21.6 (4)Cu2—O2—C9—C11−176.1 (5)
N5—Cu2—N1—N2−5(3)N1—N2—C9—O2−2.8 (8)
C1—N1—N2—C9−172.4 (5)Cu1—N2—C9—O2178.5 (4)
Cu2—N1—N2—C90.0 (6)N1—N2—C9—C11177.5 (5)
C1—N1—N2—Cu16.5 (7)Cu1—N2—C9—C11−1.2 (9)
Cu2—N1—N2—Cu1178.9 (2)Cu1—O3—C10—C11−4.5 (9)
O3—Cu1—N2—C9−3.5 (6)Cu1—O3—C10—C15174.4 (4)
N4—Cu1—N2—C9−87 (3)O3—C10—C11—C12177.1 (6)
S1—Cu1—N2—C9172.9 (6)C15—C10—C11—C12−1.9 (9)
O3—Cu1—N2—N1177.9 (4)O3—C10—C11—C9−2.4 (11)
N4—Cu1—N2—N194 (3)C15—C10—C11—C9178.6 (6)
S1—Cu1—N2—N1−5.7 (4)O2—C9—C11—C10−174.5 (6)
O3—Cu1—N4—C2034.8 (5)N2—C9—C11—C105.3 (10)
N2—Cu1—N4—C20119 (3)O2—C9—C11—C126.0 (9)
S1—Cu1—N4—C20−141.7 (5)N2—C9—C11—C12−174.2 (6)
O3—Cu1—N4—C24−142.7 (5)C10—C11—C12—C131.3 (12)
N2—Cu1—N4—C24−59 (3)C9—C11—C12—C13−179.2 (7)
S1—Cu1—N4—C2440.7 (5)C11—C12—C13—C140.0 (12)
O1—Cu2—N5—C29−0.9 (5)C12—C13—C14—C15−0.6 (12)
N1—Cu2—N5—C29−176 (3)C12—C13—C14—C19179.8 (7)
O2—Cu2—N5—C29177.8 (5)C13—C14—C15—C16−178.6 (7)
O1—Cu2—N5—C25177.0 (5)C19—C14—C15—C161.0 (10)
N1—Cu2—N5—C252(3)C13—C14—C15—C10−0.1 (10)
O2—Cu2—N5—C25−4.3 (5)C19—C14—C15—C10179.6 (6)
N1—Cu2—O1—C27.9 (5)O3—C10—C15—C160.9 (9)
O2—Cu2—O1—C218.4 (18)C11—C10—C15—C16179.9 (6)
N5—Cu2—O1—C2−171.8 (5)O3—C10—C15—C14−177.7 (6)
O1—Cu2—O2—C9−13.7 (18)C11—C10—C15—C141.3 (9)
N1—Cu2—O2—C9−3.0 (4)C14—C15—C16—C17−0.9 (10)
N5—Cu2—O2—C9176.6 (4)C10—C15—C16—C17−179.5 (6)
N2—Cu1—O3—C106.4 (5)C15—C16—C17—C18−0.7 (10)
N4—Cu1—O3—C10−176.9 (5)C16—C17—C18—C192.3 (11)
S1—Cu1—O3—C10−53 (2)C17—C18—C19—C14−2.2 (11)
N2—N1—C1—N3177.5 (5)C13—C14—C19—C18−179.8 (7)
Cu2—N1—C1—N36.3 (9)C15—C14—C19—C180.5 (11)
N2—N1—C1—S1−3.0 (8)C24—N4—C20—C21−1.6 (10)
Cu2—N1—C1—S1−174.2 (3)Cu1—N4—C20—C21−179.3 (6)
C2—N3—C1—N1−0.4 (9)N4—C20—C21—C221.9 (12)
C2—N3—C1—S1180.0 (5)C20—C21—C22—C23−0.3 (12)
Cu1—S1—C1—N1−1.1 (5)C21—C22—C23—C24−1.4 (11)
Cu1—S1—C1—N3178.5 (4)C20—N4—C24—C23−0.2 (9)
Cu2—O1—C2—N3−5.5 (10)Cu1—N4—C24—C23177.4 (5)
Cu2—O1—C2—C3175.8 (4)C22—C23—C24—N41.7 (10)
C1—N3—C2—O10.1 (10)C29—N5—C25—C261.4 (10)
C1—N3—C2—C3178.8 (5)Cu2—N5—C25—C26−176.7 (5)
O1—C2—C3—C410.6 (9)N5—C25—C26—C27−1.2 (11)
N3—C2—C3—C4−168.2 (6)C25—C26—C27—C280.0 (11)
O1—C2—C3—C8−168.9 (6)C26—C27—C28—C290.9 (11)
N3—C2—C3—C812.2 (9)C25—N5—C29—C28−0.4 (10)
C8—C3—C4—C5−2.9 (10)Cu2—N5—C29—C28177.6 (5)
C2—C3—C4—C5177.5 (6)C27—C28—C29—N5−0.7 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23···N3i0.932.533.451 (8)173

Symmetry codes: (i) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2616).

References

  • Chen, Y.-T., Dou, J.-M., Li, D.-C., Wang, D.-Q. & Zhu, Y.-H. (2007). Acta Cryst. E63, m2503–m2504.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wei, T. B., Chen, J. C., Yang, S. Y. & Wang, X. C. (1995). Chem. Res. Appl.7, 194–198.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography