PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1444–m1445.
Published online 2009 October 28. doi:  10.1107/S1600536809043505
PMCID: PMC2971175

catena-Poly[[bis­(O,O′-diisopropyl dithio­phosphato-κ2 S,S′)nickel(II)]-μ-bis­(4-pyridylmethyl­ene)diazane-κ2 N:N′]

Abstract

The Ni atom in the title linear supra­molecular polymer, [Ni(C6H14O2PS2)2(C12H10N4)]n, exists within a trans-N2S4 octa­hedral donor set defined by two symmetrically coordinating dithio­phosphate ligands and pyridine N atoms derived from two bridging bis­(4-pyridylmethyl­ene)diazane ligands. The Ni atom lies on a centre of inversion and the bis­(4-pyridylmethyl­ene)diazane ligand is also disposed about a centre of inversion. The chains are arranged into layers sustained by C—H(...)S contacts and inter­digitate with neighbouring layers, forming the crystal structure.

Related literature

For background to supra­molecular polymers of metal dithio­phosphates, see: Lai & Tiekink (2004 [triangle]); Chen et al. (2006 [triangle]); Aragoni et al. (2007 [triangle]). For a related iso-butyl structure and the synthesis, see: Berdugo & Tiekink (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1444-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H14O2PS2)2(C12H10N4)]
  • M r = 695.47
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1444-efi2.jpg
  • a = 8.661 (2) Å
  • b = 8.753 (2) Å
  • c = 11.159 (3) Å
  • α = 88.110 (8)°
  • β = 81.502 (7)°
  • γ = 89.813 (10)°
  • V = 836.2 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 98 K
  • 0.50 × 0.08 × 0.05 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.794, T max = 1
  • 7552 measured reflections
  • 3810 independent reflections
  • 3555 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.111
  • S = 1.09
  • 3810 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.70 e Å−3

Data collection: CrystalClear (Rigaku/MSC 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043505/hb5163sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043505/hb5163Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully thank the MBRS–RISE program (GM60655) for support. Cheminova is also thanked for the gift of the dithiophosphate used in this study.

supplementary crystallographic information

Comment

Interest in molecules related to the title compound (I) revolve around intriguing crystal engineering possibilities whereby different supramolecular topologies may be constructed by careful choice of organic substituents and bridging ligands (Lai & Tiekink, 2004; Chen et al., 2006; Aragoni et al., 2007). The Ni atom in (I), Fig. 1, lies on a crystallographic centre of inversion and the bis(4-pyridylmethylene)diazane molecule is similarly disposed about a centre of inversion. The Ni atom exists within an octahedral trans-N2S4 donor set defined by two symmetrically chelating dithiophosphate ligands and two trans-disposed pyridine-N atoms, Table 1. The bridging ligands lead to a linear polymer, Fig. 2, and these are arranged into layers, being connected by C—H···S contacts, Table 2 and Fig. 3. Layers interdigitate to consolidate the crystal packing, Fig. 4.

A similar coordination geometry and linear supramolecular polymer were observed in the iso-butyl derivative of (I) which was characterized crystallographically as a di-toluene solvate (Berdugo & Tiekink, 2008).

Experimental

Compound (I) was prepared by refluxing the parent nickel dithiophosphate with bis(4-pyridylmethylene)diazane, following a literature procedure (Berdugo & Tiekink, 2008).

Refinement

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C).

Figures

Fig. 1.
The asymmetric unit of (I) extended to show the Ni atom coordination geometry and a full molecule of the 4-pyridineazine ligand, showing displacement ellipsoids at the 50% probability level. Symmetry operation i: 1 - x, 1 - y, 1 - z and ii: 1 + x, 1 + ...
Fig. 2.
Supramolecular chain in (I) with base vector [111].
Fig. 3.
Layers of supramolecular chains mediated by C—H···S contacts (orange dashed lines), viewed in projection down the c axis.
Fig. 4.
View of the interdigitation of layers in the crystal structure of (I), viewed in projection down the b axis.

Crystal data

[Ni(C6H14O2PS2)2(C12H10N4)]Z = 1
Mr = 695.47F(000) = 364
Triclinic, P1Dx = 1.381 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 8.661 (2) ÅCell parameters from 2817 reflections
b = 8.753 (2) Åθ = 3.0–32.3°
c = 11.159 (3) ŵ = 0.96 mm1
α = 88.110 (8)°T = 98 K
β = 81.502 (7)°Prism, brown-orange
γ = 89.813 (10)°0.50 × 0.08 × 0.05 mm
V = 836.2 (4) Å3

Data collection

Rigaku AFC12K/SATURN724 diffractometer3810 independent reflections
Radiation source: fine-focus sealed tube3555 reflections with I > 2σ(I)
graphiteRint = 0.036
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −9→11
Tmin = 0.794, Tmax = 1k = −11→11
7552 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0532P)2 + 0.6278P] where P = (Fo2 + 2Fc2)/3
3810 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = −0.70 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni0.50000.50000.50000.01506 (12)
S10.73976 (6)0.43573 (6)0.58844 (5)0.01900 (14)
S20.46123 (7)0.68201 (6)0.66788 (5)0.01887 (14)
P10.64607 (7)0.57524 (7)0.71650 (5)0.01822 (15)
O10.5953 (2)0.48949 (19)0.84272 (15)0.0223 (4)
O20.7711 (2)0.6930 (2)0.75100 (15)0.0241 (4)
N10.3710 (2)0.3357 (2)0.61516 (17)0.0177 (4)
N20.0259 (2)0.0611 (2)0.95949 (18)0.0230 (4)
C10.6944 (3)0.3733 (3)0.8926 (2)0.0261 (5)
H10.77300.33450.82570.031*
C20.5865 (3)0.2446 (3)0.9442 (2)0.0315 (6)
H2A0.53780.20090.87920.047*
H2B0.50530.28401.00610.047*
H2C0.64640.16530.98100.047*
C30.7778 (3)0.4463 (3)0.9858 (2)0.0305 (6)
H3A0.84730.52720.94640.046*
H3B0.83930.36881.02300.046*
H3C0.70090.49031.04860.046*
C40.8388 (3)0.8094 (3)0.6614 (2)0.0266 (5)
H40.79520.79810.58400.032*
C51.0132 (3)0.7830 (3)0.6398 (3)0.0384 (7)
H5A1.03500.68220.60550.058*
H5B1.05440.78760.71680.058*
H5C1.06340.86210.58310.058*
C60.7934 (3)0.9641 (3)0.7138 (3)0.0380 (7)
H6A0.67950.97470.72490.057*
H6B0.84101.04540.65810.057*
H6C0.83030.97180.79230.057*
C70.4224 (3)0.1924 (3)0.6265 (2)0.0198 (4)
H70.51440.16240.57550.024*
C80.3473 (3)0.0860 (3)0.7094 (2)0.0210 (5)
H80.3865−0.01530.71380.025*
C90.2132 (3)0.1289 (3)0.7867 (2)0.0194 (4)
C100.1577 (3)0.2772 (3)0.7726 (2)0.0212 (5)
H100.06530.31020.82170.025*
C110.2384 (3)0.3754 (3)0.6868 (2)0.0208 (5)
H110.19900.47580.67750.025*
C120.1396 (3)0.0206 (3)0.8798 (2)0.0225 (5)
H120.1765−0.08170.88150.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni0.0173 (2)0.0127 (2)0.0143 (2)0.00009 (15)0.00006 (15)0.00119 (14)
S10.0197 (3)0.0198 (3)0.0170 (3)0.0034 (2)−0.0009 (2)−0.0008 (2)
S20.0208 (3)0.0174 (3)0.0183 (3)0.0039 (2)−0.0023 (2)−0.0019 (2)
P10.0192 (3)0.0193 (3)0.0158 (3)0.0020 (2)−0.0015 (2)−0.0011 (2)
O10.0243 (8)0.0249 (8)0.0174 (8)0.0055 (7)−0.0025 (6)0.0016 (6)
O20.0240 (9)0.0279 (9)0.0209 (9)−0.0010 (7)−0.0045 (7)−0.0036 (7)
N10.0182 (9)0.0170 (9)0.0165 (9)−0.0004 (7)0.0013 (7)0.0017 (7)
N20.0238 (10)0.0212 (10)0.0223 (11)−0.0065 (8)0.0006 (8)0.0090 (8)
C10.0270 (12)0.0323 (13)0.0186 (12)0.0112 (10)−0.0032 (10)0.0033 (9)
C20.0412 (15)0.0265 (13)0.0280 (14)0.0055 (11)−0.0096 (11)0.0026 (10)
C30.0256 (13)0.0412 (15)0.0250 (13)0.0024 (11)−0.0059 (10)0.0051 (11)
C40.0274 (12)0.0259 (12)0.0266 (13)−0.0038 (10)−0.0034 (10)−0.0033 (10)
C50.0279 (14)0.0344 (15)0.0503 (19)−0.0032 (12)0.0044 (12)−0.0087 (13)
C60.0298 (14)0.0289 (14)0.056 (2)0.0019 (11)−0.0081 (13)−0.0088 (13)
C70.0222 (11)0.0181 (10)0.0184 (11)0.0002 (9)−0.0008 (9)0.0019 (8)
C80.0240 (11)0.0155 (10)0.0233 (12)0.0003 (9)−0.0028 (9)0.0013 (8)
C90.0193 (11)0.0199 (11)0.0191 (11)−0.0027 (8)−0.0040 (8)0.0028 (8)
C100.0198 (11)0.0209 (11)0.0210 (12)−0.0004 (9)0.0023 (9)0.0019 (9)
C110.0209 (11)0.0184 (10)0.0213 (12)0.0023 (9)0.0020 (9)0.0049 (8)
C120.0229 (11)0.0224 (11)0.0228 (12)−0.0046 (9)−0.0062 (9)0.0056 (9)

Geometric parameters (Å, °)

Ni—S12.4827 (7)C3—H3A0.9800
Ni—S22.4835 (7)C3—H3B0.9800
Ni—N12.1051 (19)C3—H3C0.9800
Ni—N1i2.1051 (19)C4—C51.513 (4)
Ni—S1i2.4827 (7)C4—C61.520 (4)
Ni—S2i2.4835 (7)C4—H41.0000
S1—P11.9895 (9)C5—H5A0.9800
S2—P11.9859 (9)C5—H5B0.9800
P1—O11.5779 (17)C5—H5C0.9800
P1—O21.5934 (18)C6—H6A0.9800
O1—C11.476 (3)C6—H6B0.9800
O2—C41.464 (3)C6—H6C0.9800
N1—C71.338 (3)C7—C81.384 (3)
N1—C111.350 (3)C7—H70.9500
N2—C121.283 (3)C8—C91.399 (3)
N2—N2ii1.408 (4)C8—H80.9500
C1—C21.510 (4)C9—C101.395 (3)
C1—C31.511 (4)C9—C121.459 (3)
C1—H11.0000C10—C111.377 (3)
C2—H2A0.9800C10—H100.9500
C2—H2B0.9800C11—H110.9500
C2—H2C0.9800C12—H120.9500
N1—Ni—S1i89.02 (6)C1—C3—H3B109.5
N1i—Ni—S1i90.98 (6)H3A—C3—H3B109.5
N1—Ni—S190.98 (6)C1—C3—H3C109.5
N1i—Ni—S189.02 (6)H3A—C3—H3C109.5
N1—Ni—S2i91.02 (6)H3B—C3—H3C109.5
N1i—Ni—S2i88.98 (6)O2—C4—C5107.1 (2)
S1i—Ni—S2i82.46 (2)O2—C4—C6107.0 (2)
S1—Ni—S2i97.54 (2)C5—C4—C6113.4 (2)
N1—Ni—S288.98 (6)O2—C4—H4109.8
N1i—Ni—S291.02 (6)C5—C4—H4109.8
S1i—Ni—S297.54 (2)C6—C4—H4109.8
S1—Ni—S282.46 (2)C4—C5—H5A109.5
S1i—Ni—S1180.0C4—C5—H5B109.5
S2i—Ni—S2180.0H5A—C5—H5B109.5
N1i—Ni—N1180.0C4—C5—H5C109.5
P1—S1—Ni82.80 (3)H5A—C5—H5C109.5
P1—S2—Ni82.85 (3)H5B—C5—H5C109.5
O1—P1—O2100.84 (10)C4—C6—H6A109.5
O1—P1—S2108.61 (7)C4—C6—H6B109.5
O2—P1—S2111.61 (7)H6A—C6—H6B109.5
O1—P1—S1112.72 (7)C4—C6—H6C109.5
O2—P1—S1111.82 (7)H6A—C6—H6C109.5
S2—P1—S1110.84 (4)H6B—C6—H6C109.5
C1—O1—P1122.47 (15)N1—C7—C8122.9 (2)
C4—O2—P1119.75 (15)N1—C7—H7118.6
C7—N1—C11117.73 (19)C8—C7—H7118.6
C7—N1—Ni121.63 (15)C7—C8—C9119.4 (2)
C11—N1—Ni120.48 (15)C7—C8—H8120.3
C12—N2—N2ii111.3 (2)C9—C8—H8120.3
O1—C1—C2106.2 (2)C10—C9—C8117.6 (2)
O1—C1—C3108.7 (2)C10—C9—C12122.7 (2)
C2—C1—C3113.5 (2)C8—C9—C12119.7 (2)
O1—C1—H1109.5C11—C10—C9119.2 (2)
C2—C1—H1109.5C11—C10—H10120.4
C3—C1—H1109.5C9—C10—H10120.4
C1—C2—H2A109.5N1—C11—C10123.1 (2)
C1—C2—H2B109.5N1—C11—H11118.4
H2A—C2—H2B109.5C10—C11—H11118.4
C1—C2—H2C109.5N2—C12—C9121.1 (2)
H2A—C2—H2C109.5N2—C12—H12119.4
H2B—C2—H2C109.5C9—C12—H12119.4
C1—C3—H3A109.5
N1—Ni—S1—P1−82.10 (6)S2—Ni—N1—C7−131.96 (18)
N1i—Ni—S1—P197.90 (6)S1i—Ni—N1—C11−54.34 (18)
S2i—Ni—S1—P1−173.26 (3)S1—Ni—N1—C11125.66 (18)
S2—Ni—S1—P16.74 (3)S2i—Ni—N1—C11−136.78 (18)
N1—Ni—S2—P184.37 (6)S2—Ni—N1—C1143.22 (18)
N1i—Ni—S2—P1−95.63 (6)P1—O1—C1—C2−137.26 (18)
S1i—Ni—S2—P1173.24 (3)P1—O1—C1—C3100.3 (2)
S1—Ni—S2—P1−6.76 (3)P1—O2—C4—C5−119.8 (2)
Ni—S2—P1—O1−115.40 (7)P1—O2—C4—C6118.37 (19)
Ni—S2—P1—O2134.30 (7)C11—N1—C7—C8−1.3 (3)
Ni—S2—P1—S18.96 (3)Ni—N1—C7—C8174.02 (18)
Ni—S1—P1—O1113.02 (8)N1—C7—C8—C9−1.1 (4)
Ni—S1—P1—O2−134.19 (7)C7—C8—C9—C102.6 (3)
Ni—S1—P1—S2−8.96 (3)C7—C8—C9—C12−175.8 (2)
O2—P1—O1—C1−75.87 (19)C8—C9—C10—C11−1.8 (3)
S2—P1—O1—C1166.73 (16)C12—C9—C10—C11176.6 (2)
S1—P1—O1—C143.51 (19)C7—N1—C11—C102.1 (4)
O1—P1—O2—C4−173.76 (16)Ni—N1—C11—C10−173.22 (18)
S2—P1—O2—C4−58.58 (17)C9—C10—C11—N1−0.6 (4)
S1—P1—O2—C466.22 (17)N2ii—N2—C12—C9−179.5 (2)
S1i—Ni—N1—C7130.48 (18)C10—C9—C12—N2−5.2 (4)
S1—Ni—N1—C7−49.52 (18)C8—C9—C12—N2173.1 (2)
S2i—Ni—N1—C748.04 (18)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···S2iii0.952.773.694 (3)164

Symmetry codes: (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5163).

References

  • Aragoni, M. C., Arca, M., Crespo, M., Devillanova, F. A., Hursthouse, M. B., Huth, S. L., Isaia, F., Lippolis, V. & Verani, G. (2007). CrystEngComm, 9, 873–878.
  • Berdugo, E. & Tiekink, E. R. T. (2008). Acta Cryst. E64, m911. [PMC free article] [PubMed]
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography