PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1319.
Published online 2009 October 7. doi:  10.1107/S1600536809039695
PMCID: PMC2971168

Carbonyl­chlorido(1-methyl­sulfanylpenta-1,3-dien-1-yl-5-yl­idene)bis­(triphenyl­phosphane)osmium(II)

Abstract

The crystal structure of the title compound, [Os(C6H7S)Cl(C18H15P)2(CO)], confirms the formulation as an osmabenzene. There is a slightly distorted octa­hedral coordination environment at the OsII ion, with the triphenyl­phosphane ligands mutually trans and the chloride cis to the carbon bearing the –SMe substituent. Within the metallacyclic ring, the C—C distances are appropriate for aromatic bonds and the two Os—C distances are shorter than typical Os—C single bonds. The maximum deviation from the least-squares plane through the osmabenzene ring occurs for the carbon bearing the SMe substituent [0.1037 (18) Å].

Related literature

For the synthesis and properties of metallabenzenes, see: Bleeke (2001 [triangle]); Landorf & Haley (2006 [triangle]); Wright (2006 [triangle]). For the synthesis and properties of osmabenzenes, see: Elliott et al. (1982 [triangle], 1989 [triangle]); Rickard et al. (2000 [triangle], 2001 [triangle]). For a discussion of ring planarity in metallabenzenes, see: Zhu et al. (2007 [triangle]). For spectroscopic data, see: Maddock et al. (1996 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1319-scheme1.jpg

Experimental

Crystal data

  • [Os(C6H7S)Cl(C18H15P)2(CO)]
  • M r = 889.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1319-efi1.jpg
  • a = 13.5565 (1) Å
  • b = 15.7136 (2) Å
  • c = 18.2264 (3) Å
  • β = 109.978 (1)°
  • V = 3648.97 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.75 mm−1
  • T = 203 K
  • 0.33 × 0.28 × 0.11 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.491, T max = 0.739
  • 22209 measured reflections
  • 7812 independent reflections
  • 6032 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.060
  • S = 1.01
  • 7812 reflections
  • 444 parameters
  • H-atom parameters constrained
  • Δρmax = 1.01 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Siemens, 1995 [triangle]); cell refinement: SAINT (Siemens, 1995 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039695/lh2916sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039695/lh2916Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Auckland for granting a doctoral scholarship to SDW and the Marsden Fund for granting a doctoral scholarship to PMJ.

supplementary crystallographic information

Comment

Metallabenzenes are now a well established class of organometallic compounds and a considerable number of studies involving the syntheses, reactivity and aromatic character of these materials have been made. To obtain further data relating to the nature of the delocalized bonding in osmabenzenes (Rickard et al., 2000; Rickard et al., 2001) we have obtained the single-crystal X–ray structure of the title complex [Os(C5H4{SMe–1})Cl(CO)(PPh3)2]. The geometry about Os is approximately octahedral with the two PPh3 ligands mutually trans. Within the metallacyclic ring the Os—C1 and Os—C5 distances are shorter than those observed for normal Os—C single bonds suggesting there is some multiple character to these bonds (see Table 1). The C—C distances in this ring are very close to those found in simple aromatic compounds and come within the range of distances reported for other metallabenzenes (Bleeke, 2001; Landorf & Haley, 2006; Wright, 2006). The osmabenzene ring is not planar and the atoms that show the greatest displacement from the mean plane through Os and the five ring carbons are C1 (0.1037 (18) Å) and Os (0.1000 (13) Å). Non-planarity has been observed for a number of other metallabenzenes. This phenomenon has been investigated theoretically and shown not to compromise the electron delocalization within the ring (Zhu et al., 2007).

Experimental

[Os(C5H4{S–1})(CO)(PPh3)2] (Elliott et al., 1982; Elliott et al., 1989) (200 mg, 0.238 mmol) was dissolved in dry dichloromethane (25 ml) and methyl trifluoromethanesulfonate (534 µL, 0.48 mmol) was added. NaCl (27.8 mg, 0.476 mmol) dissolved in water (1 ml) was added to the blue solution and the mixture stirred for one hour. The dichloromethane layer was seperated and then eluted through a chromatography column (silica gel support, 2.5 cm x 1.5 cm) using dichloromethane as the eluent. The fast-moving dark blue band was collected and recrystallized from dichloromethane/ethanol (25 ml/10 ml) to give crystals of the title compound (188 mg, 89%). The crystal used for the single-crystal X-ray diffraction study was also grown from dichloromethane/ethanol. MS: Calcd for C43H37OOsP2S [M–Cl]+ 853.1624. Found: 853.1603 m/z. Anal. Found: C, 57.50; H 4.19. C43H37ClOOsP2S requires C, 58.07; H, 4.19%. 1H NMR (CDCl3, δ): 1.70 (s, 3H, SCH3), 6.57 (apparent t, 1H, H4, 3JHH = 8.5 Hz), 6.65 (d, 1H, H2, 3JHH = 8.8 Hz), 7.07 (d apparent t, 1H, H3, 3JHH = 8.8 Hz, 4JHH = 1.7 Hz), 7.45–7.69 (m, 30H, PPh3), 13.27 (d, 1H, H5, 3JHH = 9.3 Hz). 13C{1H} NMR (CDCl3, δ): 23.21 (s, SCH3), 121.60 (s, C2), 123.75 (s, C4), 126.89 (t'(Maddock et al., 1996), o-PPh3, 2,4JCP = 10.1 Hz), 129.32 (s, p-PPh3), 133.22 (t', i-PPh3, 1,3JCP = 53.3 Hz), 134.62 (t', m-PPh3, 3,5JCP = 11.1 Hz), 145.81 (s, C3), 191.61 (t, CO, 2JCP = 11.1 Hz), 220.96 (t, C5, 2JCP = 6.3 Hz), 237.42 (t, C1, 2JCP = 9.1 Hz).

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C— H 0.93–0.97 Å, with Uiso(H) = 1.2 or 1.5 times Ueq(C). The highest density peak and deepest hole are located 0.84 Å and 0.54 Å from atoms Os1 and Cl1 respectively.

Figures

Fig. 1.
The molecular structure of [Os(C5H4{SMe–1})Cl(CO)(PPh3)2] showing 50% probability displacement ellipsoids for non-hydrogen atoms. H atoms omitted for clarity.

Crystal data

[Os(C6H7S)Cl(C18H15P)2(CO)]F(000) = 1768
Mr = 889.38Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8192 reflections
a = 13.5565 (1) Åθ = 1.6–28.3°
b = 15.7136 (2) ŵ = 3.75 mm1
c = 18.2264 (3) ÅT = 203 K
β = 109.978 (1)°Plates, blue
V = 3648.97 (8) Å30.33 × 0.28 × 0.11 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer7812 independent reflections
Radiation source: fine-focus sealed tube6032 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −17→16
Tmin = 0.491, Tmax = 0.739k = 0→19
22209 measured reflectionsl = 0→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.060w = 1/[σ2(Fo2) + (0.0268P)2 + 2.9139P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.004
7812 reflectionsΔρmax = 1.01 e Å3
444 parametersΔρmin = −0.53 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00065 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Os10.503721 (7)0.750195 (6)0.123794 (5)0.01728 (5)
Cl10.52137 (6)0.89985 (5)0.17787 (4)0.03293 (16)
P10.35379 (5)0.75535 (4)0.16571 (4)0.02055 (14)
P20.65608 (5)0.75710 (4)0.08534 (4)0.02050 (14)
S10.41485 (6)0.90387 (5)0.00041 (4)0.02726 (15)
O10.6180 (2)0.6574 (2)0.26956 (18)0.0572 (7)
C10.4083 (2)0.79638 (18)0.01381 (16)0.0235 (6)
C20.3413 (2)0.74700 (19)−0.04778 (18)0.0314 (7)
H2A0.29370.7754−0.09070.038*
C30.3422 (2)0.6598 (2)−0.04821 (18)0.0351 (7)
H3A0.29130.6336−0.09090.042*
C40.4089 (3)0.6051 (2)0.00668 (19)0.0353 (7)
H4A0.40570.5466−0.00470.042*
C50.4789 (2)0.63212 (18)0.07632 (18)0.0280 (6)
H5A0.52220.58930.10690.034*
C60.5838 (2)0.6926 (2)0.2226 (2)0.0331 (7)
C70.3395 (3)0.9277 (2)−0.10003 (18)0.0413 (8)
H7A0.35500.9851−0.11220.062*
H7B0.26520.9229−0.10790.062*
H7C0.35770.8878−0.13400.062*
C110.3842 (2)0.76453 (17)0.27235 (16)0.0235 (6)
C120.3095 (3)0.7412 (2)0.30511 (19)0.0353 (7)
H12A0.24360.72140.27270.042*
C130.3310 (3)0.7467 (2)0.3850 (2)0.0426 (9)
H13A0.27970.73030.40630.051*
C140.4268 (3)0.7760 (2)0.43332 (18)0.0374 (8)
H14A0.44110.77950.48750.045*
C150.5017 (2)0.8001 (2)0.40201 (17)0.0326 (7)
H15A0.56730.82030.43470.039*
C160.4802 (2)0.79462 (19)0.32186 (16)0.0278 (6)
H16A0.53160.81150.30080.033*
C210.2689 (2)0.6613 (2)0.14554 (17)0.0290 (7)
C220.3159 (3)0.5816 (2)0.16040 (18)0.0359 (7)
H22A0.38940.57750.17590.043*
C230.2570 (3)0.5082 (2)0.1529 (2)0.0493 (10)
H23A0.29000.45470.16340.059*
C240.1479 (3)0.5146 (3)0.1294 (2)0.0570 (12)
H24A0.10700.46520.12430.068*
C250.1005 (3)0.5922 (3)0.1140 (2)0.0549 (11)
H25A0.02700.59580.09760.066*
C260.1597 (3)0.6659 (2)0.12214 (19)0.0406 (8)
H26A0.12620.71920.11190.049*
C310.2631 (2)0.8443 (2)0.12691 (16)0.0253 (6)
C320.2611 (2)0.9141 (2)0.17292 (19)0.0314 (7)
H32A0.30270.91410.22610.038*
C330.1988 (3)0.9836 (2)0.1415 (2)0.0401 (8)
H33A0.19831.03040.17340.048*
C340.1374 (2)0.9848 (2)0.0637 (2)0.0428 (9)
H34A0.09581.03260.04240.051*
C350.1373 (2)0.9154 (2)0.0172 (2)0.0409 (8)
H35A0.09470.9157−0.03570.049*
C360.1997 (2)0.8454 (2)0.04829 (18)0.0335 (7)
H36A0.19940.79840.01630.040*
C410.6232 (2)0.78681 (19)−0.01726 (16)0.0249 (6)
C420.5683 (2)0.7288 (2)−0.07572 (18)0.0325 (7)
H42A0.55280.6740−0.06220.039*
C430.5370 (3)0.7532 (2)−0.1540 (2)0.0442 (9)
H43A0.50270.7138−0.19320.053*
C440.5558 (3)0.8340 (3)−0.1742 (2)0.0459 (9)
H44A0.53470.8497−0.22710.055*
C450.6055 (3)0.8925 (2)−0.1170 (2)0.0426 (9)
H45A0.61610.9485−0.13090.051*
C460.6399 (2)0.8687 (2)−0.03906 (19)0.0321 (7)
H46A0.67490.9085−0.00050.038*
C510.7660 (2)0.82842 (19)0.13641 (17)0.0265 (6)
C520.7716 (2)0.8719 (2)0.2035 (2)0.0363 (8)
H52A0.71830.86530.22520.044*
C530.8567 (3)0.9258 (2)0.2393 (2)0.0502 (10)
H53A0.85990.95590.28460.060*
C540.9353 (3)0.9348 (2)0.2086 (2)0.0512 (10)
H54A0.99130.97230.23210.061*
C550.9324 (3)0.8887 (3)0.1431 (2)0.0523 (10)
H55A0.98780.89310.12330.063*
C560.8481 (3)0.8365 (2)0.1071 (2)0.0413 (8)
H56A0.84580.80600.06230.050*
C610.7313 (2)0.65751 (18)0.09802 (17)0.0233 (6)
C620.7491 (2)0.6108 (2)0.03920 (18)0.0320 (7)
H62A0.72020.6292−0.01290.038*
C630.8093 (3)0.5370 (2)0.0568 (2)0.0389 (8)
H63A0.82040.50570.01640.047*
C640.8526 (2)0.5094 (2)0.13256 (19)0.0334 (7)
H64A0.89270.45920.14400.040*
C650.8371 (3)0.5558 (2)0.19159 (19)0.0364 (7)
H65A0.86680.53750.24360.044*
C660.7779 (2)0.6290 (2)0.17438 (18)0.0353 (7)
H66A0.76880.66060.21530.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Os10.01787 (6)0.01638 (6)0.01841 (6)−0.00104 (4)0.00725 (4)0.00086 (4)
Cl10.0314 (4)0.0327 (4)0.0342 (4)−0.0012 (3)0.0105 (3)0.0008 (3)
P10.0185 (3)0.0244 (4)0.0191 (3)−0.0022 (3)0.0069 (3)0.0012 (3)
P20.0199 (3)0.0218 (4)0.0214 (3)−0.0007 (3)0.0091 (3)0.0001 (3)
S10.0287 (4)0.0259 (4)0.0262 (4)0.0020 (3)0.0081 (3)0.0052 (3)
O10.0490 (16)0.068 (2)0.0625 (19)0.0120 (15)0.0288 (15)0.0092 (16)
C10.0216 (13)0.0274 (15)0.0245 (14)−0.0001 (11)0.0117 (11)0.0008 (12)
C20.0269 (14)0.0362 (17)0.0276 (15)−0.0031 (13)0.0048 (12)−0.0002 (13)
C30.0302 (16)0.0405 (19)0.0320 (17)−0.0140 (14)0.0072 (13)−0.0079 (14)
C40.0419 (18)0.0235 (15)0.0453 (19)−0.0079 (14)0.0210 (15)−0.0047 (14)
C50.0300 (15)0.0228 (14)0.0366 (17)−0.0020 (12)0.0187 (13)−0.0002 (12)
C60.0261 (16)0.0375 (19)0.0424 (19)−0.0048 (14)0.0207 (15)−0.0094 (15)
C70.049 (2)0.044 (2)0.0268 (16)0.0060 (16)0.0071 (15)0.0135 (14)
C110.0260 (14)0.0235 (14)0.0205 (13)−0.0003 (11)0.0073 (11)0.0017 (11)
C120.0294 (15)0.051 (2)0.0290 (16)−0.0121 (14)0.0145 (13)−0.0062 (14)
C130.0410 (18)0.064 (3)0.0313 (17)−0.0146 (17)0.0228 (15)−0.0024 (16)
C140.0458 (19)0.0481 (19)0.0208 (15)−0.0048 (16)0.0143 (14)−0.0001 (14)
C150.0336 (17)0.0376 (18)0.0224 (15)−0.0039 (13)0.0041 (13)0.0000 (13)
C160.0281 (15)0.0322 (16)0.0240 (14)−0.0053 (13)0.0101 (12)0.0019 (12)
C210.0314 (15)0.0355 (17)0.0206 (14)−0.0126 (13)0.0096 (12)−0.0002 (12)
C220.0433 (19)0.0350 (18)0.0321 (17)−0.0121 (15)0.0166 (15)0.0006 (14)
C230.079 (3)0.0332 (19)0.040 (2)−0.0201 (19)0.0262 (19)0.0002 (16)
C240.070 (3)0.061 (3)0.037 (2)−0.043 (2)0.0148 (19)−0.0004 (19)
C250.0381 (19)0.078 (3)0.043 (2)−0.030 (2)0.0065 (16)0.006 (2)
C260.0288 (16)0.052 (2)0.0386 (19)−0.0146 (15)0.0088 (14)0.0055 (16)
C310.0167 (12)0.0344 (17)0.0274 (15)0.0017 (12)0.0107 (11)0.0069 (12)
C320.0275 (15)0.0335 (17)0.0340 (16)0.0028 (13)0.0116 (13)0.0033 (14)
C330.0327 (17)0.0363 (19)0.054 (2)0.0054 (14)0.0179 (16)0.0041 (16)
C340.0255 (16)0.043 (2)0.062 (2)0.0101 (14)0.0178 (16)0.0202 (18)
C350.0217 (15)0.064 (2)0.0350 (18)0.0087 (15)0.0067 (13)0.0186 (17)
C360.0256 (15)0.0463 (19)0.0299 (16)0.0022 (14)0.0110 (13)0.0041 (14)
C410.0243 (14)0.0291 (15)0.0246 (14)0.0035 (12)0.0127 (12)0.0050 (12)
C420.0258 (15)0.0433 (18)0.0278 (16)−0.0019 (13)0.0084 (13)0.0027 (13)
C430.0329 (17)0.071 (3)0.0270 (16)−0.0006 (17)0.0081 (14)−0.0040 (17)
C440.0354 (18)0.073 (3)0.0328 (18)0.0145 (18)0.0162 (15)0.0186 (18)
C450.0390 (18)0.048 (2)0.049 (2)0.0121 (16)0.0245 (17)0.0231 (17)
C460.0315 (16)0.0301 (16)0.0377 (17)0.0078 (13)0.0158 (14)0.0064 (13)
C510.0216 (13)0.0247 (15)0.0318 (16)−0.0023 (11)0.0072 (12)0.0013 (12)
C520.0231 (15)0.0390 (19)0.0425 (19)0.0009 (13)0.0057 (14)−0.0112 (15)
C530.0356 (18)0.045 (2)0.058 (2)0.0001 (16)0.0003 (17)−0.0200 (18)
C540.0326 (18)0.037 (2)0.072 (3)−0.0124 (15)0.0012 (18)−0.0025 (19)
C550.0328 (18)0.066 (3)0.059 (2)−0.0197 (18)0.0167 (18)0.008 (2)
C560.0372 (18)0.051 (2)0.0406 (19)−0.0133 (16)0.0191 (16)−0.0053 (16)
C610.0217 (13)0.0223 (14)0.0284 (15)0.0008 (11)0.0117 (11)0.0008 (12)
C620.0350 (16)0.0359 (17)0.0262 (15)0.0035 (14)0.0117 (13)0.0004 (13)
C630.0455 (19)0.0341 (18)0.0397 (18)0.0071 (15)0.0177 (16)−0.0108 (14)
C640.0316 (16)0.0246 (15)0.0435 (19)0.0037 (13)0.0120 (14)0.0012 (14)
C650.0362 (17)0.0371 (18)0.0347 (17)0.0111 (14)0.0106 (14)0.0067 (14)
C660.0381 (18)0.0425 (19)0.0258 (16)0.0130 (14)0.0118 (14)0.0029 (14)

Geometric parameters (Å, °)

Os1—C61.976 (4)C25—H25A0.9400
Os1—C12.109 (3)C26—H26A0.9400
Os1—C52.026 (3)C31—C321.387 (4)
Os1—P22.3996 (7)C31—C361.397 (4)
Os1—P12.4047 (7)C32—C331.379 (4)
Os1—Cl12.5293 (8)C32—H32A0.9400
P1—C211.832 (3)C33—C341.378 (5)
P1—C311.836 (3)C33—H33A0.9400
P1—C111.850 (3)C34—C351.380 (5)
P2—C411.829 (3)C34—H34A0.9400
P2—C611.839 (3)C35—C361.385 (4)
P2—C511.843 (3)C35—H35A0.9400
S1—C11.713 (3)C36—H36A0.9400
S1—C71.805 (3)C41—C461.388 (4)
O1—C60.992 (4)C41—C421.406 (4)
C1—C21.410 (4)C42—C431.396 (5)
C2—C31.370 (4)C42—H42A0.9400
C2—H2A0.9400C43—C441.371 (5)
C3—C41.393 (5)C43—H43A0.9400
C3—H3A0.9400C44—C451.380 (5)
C4—C51.367 (4)C44—H44A0.9400
C4—H4A0.9400C45—C461.388 (4)
C5—H5A0.9400C45—H45A0.9400
C7—H7A0.9700C46—H46A0.9400
C7—H7B0.9700C51—C521.380 (4)
C7—H7C0.9700C51—C561.394 (4)
C11—C121.389 (4)C52—C531.400 (4)
C11—C161.389 (4)C52—H52A0.9400
C12—C131.387 (4)C53—C541.370 (6)
C12—H12A0.9400C53—H53A0.9400
C13—C141.376 (5)C54—C551.386 (6)
C13—H13A0.9400C54—H54A0.9400
C14—C151.378 (4)C55—C561.378 (5)
C14—H14A0.9400C55—H55A0.9400
C15—C161.391 (4)C56—H56A0.9400
C15—H15A0.9400C61—C621.386 (4)
C16—H16A0.9400C61—C661.391 (4)
C21—C221.389 (5)C62—C631.392 (4)
C21—C261.395 (4)C62—H62A0.9400
C22—C231.383 (4)C63—C641.373 (5)
C22—H22A0.9400C63—H63A0.9400
C23—C241.395 (6)C64—C651.374 (4)
C23—H23A0.9400C64—H64A0.9400
C24—C251.362 (6)C65—C661.376 (4)
C24—H24A0.9400C65—H65A0.9400
C25—C261.388 (5)C66—H66A0.9400
C6—Os1—C585.91 (13)C23—C24—H24A119.9
C6—Os1—C1172.52 (12)C24—C25—C26120.7 (4)
C5—Os1—C187.18 (12)C24—C25—H25A119.7
C6—Os1—P291.54 (9)C26—C25—H25A119.7
C5—Os1—P287.16 (8)C25—C26—C21120.2 (4)
C1—Os1—P290.95 (7)C25—C26—H26A119.9
C6—Os1—P189.25 (9)C21—C26—H26A119.9
C5—Os1—P197.56 (8)C32—C31—C36118.5 (3)
C1—Os1—P188.84 (7)C32—C31—P1121.2 (2)
P2—Os1—P1175.26 (2)C36—C31—P1120.1 (2)
C6—Os1—Cl197.00 (10)C33—C32—C31120.7 (3)
C5—Os1—Cl1176.00 (9)C33—C32—H32A119.6
C1—Os1—Cl189.78 (8)C31—C32—H32A119.6
P2—Os1—Cl195.48 (2)C34—C33—C32120.5 (3)
P1—Os1—Cl179.78 (2)C34—C33—H33A119.7
C21—P1—C31104.19 (15)C32—C33—H33A119.7
C21—P1—C1199.96 (13)C33—C34—C35119.6 (3)
C31—P1—C11103.00 (13)C33—C34—H34A120.2
C21—P1—Os1116.76 (10)C35—C34—H34A120.2
C31—P1—Os1115.50 (9)C34—C35—C36120.3 (3)
C11—P1—Os1115.31 (10)C34—C35—H35A119.8
C41—P2—C61106.08 (13)C36—C35—H35A119.8
C41—P2—C51103.53 (14)C35—C36—C31120.3 (3)
C61—P2—C5197.81 (13)C35—C36—H36A119.8
C41—P2—Os1112.12 (9)C31—C36—H36A119.8
C61—P2—Os1114.88 (9)C46—C41—C42118.7 (3)
C51—P2—Os1120.54 (10)C46—C41—P2121.5 (2)
C1—S1—C7108.06 (15)C42—C41—P2119.4 (2)
C2—C1—S1118.7 (2)C43—C42—C41119.6 (3)
C2—C1—Os1125.9 (2)C43—C42—H42A120.2
S1—C1—Os1115.46 (15)C41—C42—H42A120.2
C3—C2—C1123.4 (3)C44—C43—C42120.6 (3)
C3—C2—H2A118.3C44—C43—H43A119.7
C1—C2—H2A118.3C42—C43—H43A119.7
C2—C3—C4128.2 (3)C43—C44—C45120.1 (3)
C2—C3—H3A115.9C43—C44—H44A119.9
C4—C3—H3A115.9C45—C44—H44A119.9
C5—C4—C3123.3 (3)C44—C45—C46120.0 (3)
C5—C4—H4A118.3C44—C45—H45A120.0
C3—C4—H4A118.3C46—C45—H45A120.0
C4—C5—Os1130.0 (2)C45—C46—C41120.9 (3)
C4—C5—H5A115.0C45—C46—H46A119.6
Os1—C5—H5A115.0C41—C46—H46A119.6
O1—C6—Os1172.7 (4)C52—C51—C56119.0 (3)
S1—C7—H7A109.5C52—C51—P2122.6 (2)
S1—C7—H7B109.5C56—C51—P2118.4 (2)
H7A—C7—H7B109.5C51—C52—C53119.9 (3)
S1—C7—H7C109.5C51—C52—H52A120.0
H7A—C7—H7C109.5C53—C52—H52A120.0
H7B—C7—H7C109.5C54—C53—C52120.4 (4)
C12—C11—C16118.0 (3)C54—C53—H53A119.8
C12—C11—P1119.8 (2)C52—C53—H53A119.8
C16—C11—P1122.1 (2)C53—C54—C55120.0 (3)
C13—C12—C11120.8 (3)C53—C54—H54A120.0
C13—C12—H12A119.6C55—C54—H54A120.0
C11—C12—H12A119.6C56—C55—C54119.7 (3)
C14—C13—C12120.4 (3)C56—C55—H55A120.1
C14—C13—H13A119.8C54—C55—H55A120.1
C12—C13—H13A119.8C55—C56—C51120.9 (3)
C13—C14—C15119.7 (3)C55—C56—H56A119.5
C13—C14—H14A120.1C51—C56—H56A119.5
C15—C14—H14A120.1C62—C61—C66117.6 (3)
C14—C15—C16119.9 (3)C62—C61—P2126.0 (2)
C14—C15—H15A120.1C66—C61—P2116.3 (2)
C16—C15—H15A120.1C61—C62—C63120.4 (3)
C11—C16—C15121.1 (3)C61—C62—H62A119.8
C11—C16—H16A119.4C63—C62—H62A119.8
C15—C16—H16A119.4C64—C63—C62120.7 (3)
C22—C21—C26118.4 (3)C64—C63—H63A119.6
C22—C21—P1118.3 (2)C62—C63—H63A119.6
C26—C21—P1123.2 (3)C63—C64—C65119.5 (3)
C23—C22—C21121.5 (3)C63—C64—H64A120.2
C23—C22—H22A119.3C65—C64—H64A120.2
C21—C22—H22A119.3C64—C65—C66119.9 (3)
C22—C23—C24119.1 (4)C64—C65—H65A120.1
C22—C23—H23A120.5C66—C65—H65A120.1
C24—C23—H23A120.5C65—C66—C61121.8 (3)
C25—C24—C23120.2 (3)C65—C66—H66A119.1
C25—C24—H24A119.9C61—C66—H66A119.1

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2916).

References

  • Bleeke, J. R. (2001). Chem. Rev.101, 1205–1227. [PubMed]
  • Elliott, G. P., McAuley, N. M. & Roper, W. R. (1989). Inorg. Synth.26, 184–189.
  • Elliott, G. P., Roper, W. R. & Waters, J. M. (1982). J. Chem. Soc. Chem. Commun. pp. 811–813.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Landorf, C. W. & Haley, M. M. (2006). Angew. Chem. Int. Ed.45, 3914–3936. [PubMed]
  • Maddock, S. M., Rickard, C. E. F., Roper, W. R. & Wright, L. J. (1996). Organometallics, 15, 1793–1803.
  • Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2000). Angew. Chem. Int. Ed.39, 750–752. [PubMed]
  • Rickard, C. E. F., Roper, W. R., Woodgate, S. D. & Wright, L. J. (2001). Organomet. Chem.623, 109–115.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1995). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Wright, L. J. (2006). Dalton Trans. pp. 1821–1827. [PubMed]
  • Zhu, J., Jia, G. & Lin, Z. (2007). Organometallics, 26, 1986–1995.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography