PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1401.
Published online 2009 October 23. doi:  10.1107/S160053680904238X
PMCID: PMC2971167

Racemic (RS C,SR S)-(2-{[1-allyl­oxy­carbonyl-3-(methyl­sulfanyl)prop­yl]iminometh­yl}phenyl-κ3 S,N,C 1)chlorido­platinum(II)

Abstract

The title compound, [Pt(C15H18NO2S)Cl], was obtained by the cyclo­metallation reaction of cis-bis­(benzonitrile)dichlorido­platinum(II) with N-benzyl­idene-l-methio­nine allyl ester in refluxing toluene. The PtII atom has a square-planar geometry and is tetra-coordinated by the Cl atom and the C, N and S atoms from the benzyl­idene methio­nine ester ligand. In the crystal structure, the S atoms show opposite chiral configurations with respect to the α-carbon of the methio­nine, reducing steric repulsion between the methyl and allyl ester groups.

Related literature

For cyclometallated PtII complexes having terdentate benzylidenamine ligands cyclo­metallated benzyl­ideneamine, see: Capapé et al. (2005 [triangle]); Caubet et al. (2003 [triangle]); Riera et al. (2000 [triangle]). For organometallic amino acid complexes, see: Severin et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1401-scheme1.jpg

Experimental

Crystal data

  • [Pt(C15H18NO2S)Cl]
  • M r = 506.90
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1401-efi1.jpg
  • a = 8.6000 (13) Å
  • b = 9.5093 (14) Å
  • c = 19.679 (3) Å
  • β = 94.398 (2)°
  • V = 1604.6 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 9.04 mm−1
  • T = 180 K
  • 0.50 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.610, T max = 0.862
  • 12273 measured reflections
  • 3105 independent reflections
  • 2854 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.052
  • S = 1.07
  • 3105 reflections
  • 191 parameters
  • H-atom parameters constrained
  • Δρmax = 1.36 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904238X/is2471sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904238X/is2471Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Young Scientists (Start-up, 19850030).

supplementary crystallographic information

Comment

Research on cyclometallated complexes (Capapé et al., 2005; Riera et al., 2000) has been focused because of their fundamental applications as luminescent materials (Caubet et al., 2003) and catalysts for a range of cross-coupling reactions. Amino acids, possessing natural chiral backbone and strong coordinating groups, are one of the potent candidates for designing stable cyclometallated complexes with highly controlled stereo-structure (Severin et al., 1998). Here, we report the crystal structure of the platinum (II) complex (1), containing chiral methionine-derived C,N,S-terdentate ligand.

The crystal structure of title compound (1) is presented in Fig. 1. The Pt(II) atom is tetracoordinated in a square-planar environment by a Cl atom and C, N, S atoms from benzylidene methionine ester ligand. In the [Pt (C15H18NO2S)Cl] (1), S atoms showed opposite chiral configurations to the α-carbon of methionine for reducing steric repulsion between methyl and allyl ester groups (Fig. 2).

Experimental

The methionine-derived ligand was synthesized from three step reactions, esterification, deprotection, condensation using Fmoc-L-methionine as a starting material (Fig. 3). A suspension of cis-[PtCl2(PhCN)2] and methionine-derived ligand was refluxed under nitrogen atmosphere for 3 h. The crude mixture was purified by SiO2 flash column chromatography. Single crystals for X-ray analyses were obtained from a CH2Cl2 solution.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with Carene—H and Callyl—H = 0.93 Å, Cmethyl—H = 0.96 Å, Calkyl—H = 0.97Å and Cα—H = 0.98 Å, and with Uiso(H) = 1.2Ueq(Carene, Calkyl) and Uiso(H) = 1.5Ueq(Cmethyl). Electron density synthesis with coefficients Fo—Fc: Highest peak 1.36 at 0.0428, 0.4390, 0.1909 (0.86 Å from Pt1)

Figures

Fig. 1.
ORTEP drawing of (RC,SS)-1 with 50% probability displacement.
Fig. 2.
The packing structure of (1). Hydrogen atoms are omitted for clarity.
Fig. 3.
Synthetic scheme of the amino acid-derived ligand for 1.

Crystal data

[Pt(C15H18NO2S)Cl]F(000) = 968
Mr = 506.90Dx = 2.098 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1024 reflections
a = 8.6000 (13) Åθ = 2.8–26.0°
b = 9.5093 (14) ŵ = 9.04 mm1
c = 19.679 (3) ÅT = 180 K
β = 94.398 (2)°Prism, orange
V = 1604.6 (4) Å30.50 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer3105 independent reflections
Radiation source: fine-focus sealed tube2854 reflections with I > 2σ(I)
graphiteRint = 0.024
ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −9→10
Tmin = 0.610, Tmax = 0.862k = −11→11
12273 measured reflectionsl = −24→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.033P)2 + 0.6405P] where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.003
191 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.456604 (14)0.848674 (12)0.309063 (6)0.01942 (6)
S40.63428 (10)0.87893 (9)0.22448 (5)0.02394 (18)
Cl10.60649 (11)1.00955 (10)0.37235 (5)0.0338 (2)
C30.3033 (4)0.8222 (3)0.37990 (18)0.0224 (7)
N40.3141 (3)0.7078 (3)0.26035 (14)0.0222 (6)
C60.1849 (5)0.9473 (5)−0.0659 (2)0.0518 (12)
H6A0.15300.8793−0.09800.062*
H6B0.22031.0341−0.08010.062*
O70.1383 (4)0.8499 (3)0.16257 (16)0.0423 (7)
C90.2011 (4)0.6636 (3)0.29340 (19)0.0258 (8)
H90.13180.59590.27520.031*
C110.1695 (5)0.8600 (4)0.4821 (2)0.0331 (9)
H110.16390.90670.52340.040*
O120.2371 (3)0.7266 (3)0.07819 (13)0.0377 (6)
C130.1798 (5)0.9200 (5)0.0011 (3)0.0497 (11)
H130.21220.98930.03240.060*
C150.1855 (4)0.7230 (3)0.36017 (17)0.0242 (7)
C160.5768 (4)0.7677 (4)0.15222 (17)0.0277 (7)
H16A0.51390.82290.11900.033*
H16B0.66990.73880.13110.033*
C170.2223 (4)0.7597 (4)0.14303 (18)0.0292 (8)
C180.0640 (4)0.6922 (4)0.40057 (19)0.0322 (8)
H18−0.01000.62460.38680.039*
C190.2922 (4)0.8882 (4)0.44249 (18)0.0274 (7)
H190.36850.95240.45800.033*
C200.0548 (4)0.7633 (4)0.46131 (18)0.0366 (9)
H20−0.02770.74650.48810.044*
C210.1259 (5)0.7871 (5)0.0261 (2)0.0469 (11)
H21A0.11000.7217−0.01160.056*
H21B0.02640.80090.04530.056*
C270.8092 (4)0.7906 (4)0.2577 (2)0.0355 (9)
H27A0.78810.69220.26270.053*
H27B0.84340.82980.30120.053*
H27C0.88920.80290.22680.053*
C280.3198 (4)0.6605 (3)0.18980 (18)0.0246 (8)
H280.26750.56890.18670.030*
C290.4852 (4)0.6366 (3)0.16894 (19)0.0270 (8)
H29A0.54360.58700.20560.032*
H29B0.47930.57560.12930.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.01859 (9)0.02131 (9)0.01877 (9)−0.00125 (4)0.00404 (6)−0.00029 (4)
S40.0227 (4)0.0254 (4)0.0247 (5)0.0004 (3)0.0077 (3)0.0000 (3)
Cl10.0320 (5)0.0411 (5)0.0291 (5)−0.0148 (4)0.0066 (4)−0.0086 (4)
C30.0202 (18)0.0253 (16)0.0217 (18)−0.0021 (13)0.0012 (14)0.0065 (13)
N40.0247 (15)0.0216 (14)0.0206 (14)−0.0022 (11)0.0042 (11)−0.0008 (11)
C60.046 (3)0.062 (3)0.050 (3)0.009 (2)0.020 (2)0.018 (2)
O70.0392 (17)0.0494 (18)0.0387 (17)0.0171 (13)0.0061 (14)0.0016 (12)
C90.0243 (19)0.0242 (18)0.029 (2)−0.0058 (13)0.0012 (15)−0.0004 (13)
C110.030 (2)0.047 (2)0.022 (2)−0.0010 (16)0.0050 (16)−0.0026 (15)
O120.0289 (14)0.0599 (18)0.0244 (13)0.0047 (13)0.0030 (11)0.0035 (12)
C130.036 (2)0.052 (3)0.062 (3)0.007 (2)0.005 (2)0.001 (2)
C150.0224 (17)0.0290 (18)0.0211 (17)−0.0015 (13)0.0013 (13)0.0021 (13)
C160.0244 (18)0.036 (2)0.0236 (17)0.0017 (15)0.0079 (14)−0.0030 (15)
C170.0224 (18)0.037 (2)0.0287 (19)−0.0002 (15)0.0044 (14)0.0039 (16)
C180.024 (2)0.042 (2)0.030 (2)−0.0109 (16)0.0030 (15)0.0034 (17)
C190.0253 (19)0.0330 (18)0.0240 (18)−0.0018 (15)0.0021 (14)−0.0021 (15)
C200.028 (2)0.059 (3)0.0234 (19)−0.0062 (18)0.0097 (15)0.0058 (17)
C210.036 (2)0.071 (3)0.033 (2)0.000 (2)−0.0041 (18)0.009 (2)
C270.0222 (19)0.043 (2)0.041 (2)0.0063 (16)0.0015 (16)−0.0047 (18)
C280.029 (2)0.0233 (18)0.0219 (18)−0.0019 (13)0.0018 (15)−0.0044 (12)
C290.027 (2)0.0287 (18)0.0255 (19)0.0064 (14)0.0037 (15)−0.0075 (14)

Geometric parameters (Å, °)

Pt1—C32.006 (4)C13—C211.446 (7)
Pt1—N42.009 (3)C13—H130.9300
Pt1—Cl12.3037 (9)C15—C181.392 (5)
Pt1—S42.3618 (9)C16—C291.524 (5)
S4—C271.801 (4)C16—H16A0.9700
S4—C161.810 (3)C16—H16B0.9700
C3—C191.392 (5)C17—C281.524 (5)
C3—C151.417 (5)C18—C201.381 (5)
N4—C91.281 (4)C18—H180.9300
N4—C281.464 (4)C19—H190.9300
C6—C131.348 (6)C20—H200.9300
C6—H6A0.9300C21—H21A0.9700
C6—H6B0.9300C21—H21B0.9700
O7—C171.204 (4)C27—H27A0.9600
C9—C151.446 (5)C27—H27B0.9600
C9—H90.9300C27—H27C0.9600
C11—C191.386 (5)C28—C291.528 (5)
C11—C201.387 (5)C28—H280.9800
C11—H110.9300C29—H29A0.9700
O12—C171.330 (4)C29—H29B0.9700
O12—C211.464 (5)
C3—Pt1—N480.72 (13)O7—C17—O12125.4 (3)
C3—Pt1—Cl194.46 (10)O7—C17—C28124.4 (3)
N4—Pt1—Cl1175.18 (8)O12—C17—C28110.1 (3)
C3—Pt1—S4179.20 (10)C20—C18—C15119.1 (3)
N4—Pt1—S498.56 (8)C20—C18—H18120.4
Cl1—Pt1—S486.26 (3)C15—C18—H18120.4
C27—S4—C16100.53 (18)C11—C19—C3121.2 (3)
C27—S4—Pt1104.77 (14)C11—C19—H19119.4
C16—S4—Pt1109.27 (12)C3—C19—H19119.4
C19—C3—C15116.5 (3)C18—C20—C11119.6 (3)
C19—C3—Pt1130.7 (3)C18—C20—H20120.2
C15—C3—Pt1112.8 (2)C11—C20—H20120.2
C9—N4—C28117.6 (3)C13—C21—O12111.9 (4)
C9—N4—Pt1115.8 (2)C13—C21—H21A109.2
C28—N4—Pt1126.4 (2)O12—C21—H21A109.2
C13—C6—H6A120.0C13—C21—H21B109.2
C13—C6—H6B120.0O12—C21—H21B109.2
H6A—C6—H6B120.0H21A—C21—H21B107.9
N4—C9—C15117.4 (3)S4—C27—H27A109.5
N4—C9—H9121.3S4—C27—H27B109.5
C15—C9—H9121.3H27A—C27—H27B109.5
C19—C11—C20121.1 (4)S4—C27—H27C109.5
C19—C11—H11119.4H27A—C27—H27C109.5
C20—C11—H11119.4H27B—C27—H27C109.5
C17—O12—C21118.2 (3)N4—C28—C17109.0 (3)
C6—C13—C21122.5 (5)N4—C28—C29113.6 (3)
C6—C13—H13118.8C17—C28—C29114.2 (3)
C21—C13—H13118.8N4—C28—H28106.5
C18—C15—C3122.4 (3)C17—C28—H28106.5
C18—C15—C9124.2 (3)C29—C28—H28106.5
C3—C15—C9113.3 (3)C16—C29—C28116.4 (3)
C29—C16—S4115.0 (2)C16—C29—H29A108.2
C29—C16—H16A108.5C28—C29—H29A108.2
S4—C16—H16A108.5C16—C29—H29B108.2
C29—C16—H16B108.5C28—C29—H29B108.2
S4—C16—H16B108.5H29A—C29—H29B107.4
H16A—C16—H16B107.5
N4—Pt1—S4—C27−107.41 (16)C21—O12—C17—C28165.9 (3)
Cl1—Pt1—S4—C2772.70 (14)C3—C15—C18—C201.8 (6)
Cl1—Pt1—S4—C16179.70 (13)C9—C15—C18—C20−175.2 (3)
N4—Pt1—C3—C19−176.3 (4)C20—C11—C19—C31.1 (6)
Cl1—Pt1—C3—C193.6 (3)C15—C3—C19—C11−1.6 (5)
N4—Pt1—C3—C151.1 (2)Pt1—C3—C19—C11175.8 (3)
Cl1—Pt1—C3—C15−179.0 (2)C15—C18—C20—C11−2.4 (6)
C3—Pt1—N4—C9−1.8 (3)C19—C11—C20—C181.0 (6)
S4—Pt1—N4—C9178.5 (2)C6—C13—C21—O12128.9 (4)
C3—Pt1—N4—C28172.9 (3)C17—O12—C21—C1390.1 (5)
S4—Pt1—N4—C28−6.8 (3)C9—N4—C28—C1786.9 (4)
C28—N4—C9—C15−173.0 (3)Pt1—N4—C28—C17−87.7 (3)
Pt1—N4—C9—C152.2 (4)C9—N4—C28—C29−144.4 (3)
C19—C3—C15—C180.1 (5)Pt1—N4—C28—C2940.9 (4)
Pt1—C3—C15—C18−177.7 (3)O7—C17—C28—N4−9.1 (5)
C19—C3—C15—C9177.5 (3)O12—C17—C28—N4174.3 (3)
Pt1—C3—C15—C9−0.3 (4)O7—C17—C28—C29−137.4 (4)
N4—C9—C15—C18176.1 (3)O12—C17—C28—C2946.0 (4)
N4—C9—C15—C3−1.2 (4)S4—C16—C29—C2869.7 (4)
C27—S4—C16—C2983.2 (3)N4—C28—C29—C16−78.1 (4)
Pt1—S4—C16—C29−26.7 (3)C17—C28—C29—C1647.8 (4)
C21—O12—C17—O7−10.6 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2471).

References

  • Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Capapé, A., Crespo, M., Granell, J., Font-Bardía, M. & Solans, X. (2005). J. Organomet. Chem.690, 4309–4318.
  • Caubet, A., López, C., Solans, X. & Font-Barda, M. (2003). J. Organomet. Chem.669, 164–171.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Riera, X., Caubet, A., Lopez, C., Moreno, V., Solans, X. & Font-Bardia, M. (2000). Organometallics, 19, 1384–1390.
  • Severin, K., Bergs, R. & Beck, W. (1998). Angew. Chem. Int. Ed.37, 1634–1654.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography