PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1342.
Published online 2009 October 10. doi:  10.1107/S1600536809040719
PMCID: PMC2971166

trans-Dichloridobis[tris­(2-methoxy­phen­yl)phosphine]palladium(II)

Abstract

The structure of the title compound, [PdCl2(C21H21O3P)2], shows a nearly square-planar geometry for the PdII atom within the Cl2Pd[P(PhOMe)3]2 ligand set. The PdII atom sits on a centre of inversion and therefore the asymmetric unit contains one half-mol­ecule, i.e. half of one PdII atom, one Cl atom and one tris­(2-methoxy­phen­yl)phosphine ligand.

Related literature

For related structures and literature on similar palladium complexes, see: Robertson & Cole-Hamilton (2002 [triangle]); Van Leeuwen et al. (2003 [triangle]); Williams et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1342-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C21H21O3P)2]
  • M r = 882.00
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1342-efi1.jpg
  • a = 9.1415 (2) Å
  • b = 10.8985 (3) Å
  • c = 12.0287 (3) Å
  • α = 103.691 (2)°
  • β = 109.275 (3)°
  • γ = 108.438 (2)°
  • V = 992.26 (5) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.73 mm−1
  • T = 294 K
  • 0.30 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (APEX2 AXScale; Bruker, 2008 [triangle]) T min = 0.811, T max = 0.931
  • 11296 measured reflections
  • 4894 independent reflections
  • 3672 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.094
  • S = 0.97
  • 4894 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART-NT (Bruker, 1999 [triangle]); cell refinement: SAINT (Bruker, 2008 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040719/bq2163sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040719/bq2163Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the University of the Witwaters­rand for their facilities and the use of the diffractometer in the Jan Boeyens Structural Chemistry Laboratory.

supplementary crystallographic information

Comment

The palladium-catalysed methoxycarbonylation (Robertson and Cole-Hamilton, 2002) of 1-alkenes is an active area of research. The preferred (pre)-catalysts of general structure (Ar3P)2PdX2 (X = Cl, DMS, OTf etc.) are either preformed or generated in situ. The x-ray structures (Van Leeuwen et al., 2003 and Williams et al., 2008) of several of this class of palladium(II) complexes have been determined. Only some of these have found application in the catalysis of the methoxycarbonylation reaction, but their use results mainly in the formation of linear esters (Robertson and Cole-Hamilton, 2002). However, we have identified some palladium(II) complexes which catalyse the regioselective formation of branched esters. We report here the structure of one of these.

The structure of the title compound, [PdCl2(C42H42P2O6)], (I), shows a nearly square planar geometry (Table 1.) for the PdII atom within the Cl2(P(PhOMe)3) ligand set. The palladium atom sits on a centre of inversion and therefore the the asymmetric unit contains the half of the molecule, i.e. half of the palladium atom, one chlorine atom and one tris-(2-methoxyphenyl)phosphine ligand (Figure 1.)

Experimental

Starting ligand material, tris-(2-methoxyphenyl)phosphine (1.408 g, 4 mmol) was added to a solution of palladium(II) chloride (1.288 g, 2 mmol) and anhydrous lithium chloride (168 mg, 4 mmol) in 15 ml methanol. The mixture was stirred under reflux in an atmosphere of nitrogen until all the phosphine reagent had reacted and a yellow product had formed (ca 1 hr). The reaction mixture was cooled and the product collected by filtration; washed with fresh methanol and dried under vacuum. The crude product (1.41 g) was dissolved in dichloromethane and crystallization of the title compound was carried out by diethyl ether vapor diffusion into the dichloromethane. The crystals of the title compound were bright yellow prisms (m. p. > 222° C, decomp.) and a suitable crystal was selected for the single-crystal X-ray diffraction analysis.

Refinement

H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.93-0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C for Me). For (I), the highest peak in the final difference map is 1.01 Å from Pd1 and the deepest hole is 0.01 Å from Pd1.

Figures

Fig. 1.
: Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.[Symmetry code:(i) -x, -y, -z+1].

Crystal data

[PdCl2(C42H42O6P2)]Z = 1
Mr = 882.00F(000) = 452
Triclinic, P1Dx = 1.476 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1415 (2) ÅCell parameters from 3513 reflections
b = 10.8985 (3) Åθ = 2.3–25.9°
c = 12.0287 (3) ŵ = 0.73 mm1
α = 103.691 (2)°T = 294 K
β = 109.275 (3)°Plate, yellow
γ = 108.438 (2)°0.30 × 0.16 × 0.10 mm
V = 992.26 (5) Å3

Data collection

Bruker SMART CCD diffractometer4894 independent reflections
Radiation source: fine-focus sealed tube3672 reflections with I > 2σ(I)
graphiteRint = 0.039
[var phi] and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan (APEX2 AXScale; Bruker, 2008)h = −12→11
Tmin = 0.811, Tmax = 0.931k = −14→13
11296 measured reflectionsl = −15→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 0.97w = 1/[σ2(Fo2) + (0.051P)2] where P = (Fo2 + 2Fc2)/3
4894 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.43 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.00000.00000.50000.02713 (10)
Cl10.15837 (9)−0.10437 (8)0.59870 (7)0.04185 (18)
P1−0.08161 (8)−0.18084 (7)0.30980 (7)0.02821 (16)
O1−0.0797 (3)−0.3741 (2)0.0829 (2)0.0456 (5)
O2−0.0304 (3)0.0196 (2)0.1933 (2)0.0514 (6)
O3−0.3775 (3)−0.2921 (2)0.3590 (2)0.0499 (6)
C110.0985 (3)−0.1701 (3)0.2718 (3)0.0330 (6)
C120.2580 (4)−0.0560 (3)0.3521 (3)0.0389 (7)
H120.27480.00320.42950.047*
C130.3914 (4)−0.0308 (3)0.3165 (3)0.0460 (8)
H130.49690.04530.37020.055*
C140.3682 (4)−0.1176 (4)0.2026 (3)0.0477 (8)
H140.4581−0.10020.17960.057*
C150.2113 (4)−0.2308 (3)0.1219 (3)0.0449 (8)
H150.1958−0.28900.04460.054*
C160.0765 (4)−0.2577 (3)0.1565 (3)0.0367 (7)
C17−0.1525 (5)−0.4108 (4)−0.0510 (3)0.0573 (9)
H17A−0.1702−0.3344−0.06980.086*
H17B−0.2605−0.4919−0.09060.086*
H17C−0.0761−0.4309−0.08320.086*
C21−0.2402 (3)−0.1916 (3)0.1633 (3)0.0321 (6)
C22−0.4005 (4)−0.3027 (3)0.0900 (3)0.0374 (7)
H22−0.4308−0.37760.11530.045*
C23−0.5172 (4)−0.3056 (4)−0.0200 (3)0.0471 (8)
H23−0.6235−0.3822−0.06930.056*
C24−0.4724 (5)−0.1919 (4)−0.0553 (3)0.0572 (9)
H24−0.5514−0.1908−0.12700.069*
C25−0.3139 (5)−0.0814 (4)0.0140 (3)0.0540 (9)
H25−0.2853−0.0065−0.01150.065*
C26−0.1954 (4)−0.0806 (3)0.1223 (3)0.0388 (7)
C270.0186 (6)0.1455 (4)0.1722 (5)0.0838 (14)
H27A−0.06170.18420.17450.126*
H27B0.01960.12680.09040.126*
H27C0.13130.21100.23740.126*
C31−0.1653 (3)−0.3488 (3)0.3249 (3)0.0311 (6)
C32−0.0820 (4)−0.4361 (3)0.3219 (3)0.0397 (7)
H320.0107−0.41420.30210.048*
C33−0.1362 (5)−0.5554 (3)0.3482 (3)0.0507 (9)
H33−0.0805−0.61350.34540.061*
C34−0.2717 (5)−0.5873 (3)0.3784 (3)0.0574 (9)
H34−0.3069−0.66680.39690.069*
C35−0.3573 (5)−0.5032 (3)0.3817 (3)0.0522 (9)
H35−0.4505−0.52670.40090.063*
C36−0.3034 (4)−0.3833 (3)0.3561 (3)0.0403 (7)
C37−0.5075 (5)−0.3122 (4)0.4017 (4)0.0604 (10)
H37A−0.4612−0.30540.48820.091*
H37B−0.6007−0.40310.34880.091*
H37C−0.5486−0.24180.39680.091*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.02580 (16)0.02587 (16)0.02807 (18)0.01139 (13)0.01105 (13)0.00837 (13)
Cl10.0434 (4)0.0428 (4)0.0399 (4)0.0256 (4)0.0126 (4)0.0151 (4)
P10.0270 (4)0.0260 (4)0.0292 (4)0.0104 (3)0.0123 (3)0.0080 (3)
O10.0460 (13)0.0431 (12)0.0391 (13)0.0129 (11)0.0218 (11)0.0058 (11)
O20.0507 (14)0.0417 (12)0.0597 (16)0.0118 (11)0.0254 (12)0.0255 (12)
O30.0570 (14)0.0500 (13)0.0703 (17)0.0293 (12)0.0437 (13)0.0363 (13)
C110.0313 (14)0.0336 (15)0.0346 (16)0.0148 (12)0.0158 (13)0.0107 (13)
C120.0347 (16)0.0396 (16)0.0374 (17)0.0140 (14)0.0153 (14)0.0104 (14)
C130.0309 (16)0.0493 (19)0.056 (2)0.0150 (15)0.0182 (16)0.0205 (17)
C140.0445 (18)0.060 (2)0.060 (2)0.0299 (17)0.0343 (18)0.0301 (19)
C150.0510 (19)0.0494 (19)0.045 (2)0.0264 (17)0.0296 (17)0.0175 (17)
C160.0381 (16)0.0345 (15)0.0401 (18)0.0169 (13)0.0199 (14)0.0128 (14)
C170.062 (2)0.055 (2)0.040 (2)0.0152 (19)0.0176 (18)0.0142 (18)
C210.0349 (15)0.0357 (15)0.0280 (15)0.0174 (13)0.0150 (13)0.0111 (13)
C220.0354 (16)0.0389 (16)0.0338 (16)0.0168 (14)0.0134 (14)0.0089 (14)
C230.0415 (18)0.053 (2)0.0350 (18)0.0240 (16)0.0079 (15)0.0063 (16)
C240.061 (2)0.073 (3)0.0312 (18)0.039 (2)0.0069 (17)0.0153 (18)
C250.076 (3)0.054 (2)0.044 (2)0.035 (2)0.026 (2)0.0282 (18)
C260.0434 (17)0.0390 (16)0.0357 (17)0.0185 (14)0.0191 (15)0.0135 (14)
C270.092 (3)0.052 (2)0.102 (4)0.013 (2)0.041 (3)0.047 (3)
C310.0337 (14)0.0236 (13)0.0253 (14)0.0084 (12)0.0070 (12)0.0056 (12)
C320.0413 (17)0.0349 (16)0.0309 (16)0.0145 (14)0.0073 (14)0.0079 (13)
C330.067 (2)0.0354 (17)0.042 (2)0.0262 (17)0.0112 (18)0.0138 (16)
C340.082 (3)0.0341 (18)0.047 (2)0.0177 (18)0.021 (2)0.0208 (17)
C350.064 (2)0.0405 (18)0.056 (2)0.0166 (17)0.0304 (19)0.0270 (18)
C360.0459 (17)0.0335 (15)0.0386 (18)0.0135 (14)0.0178 (15)0.0153 (14)
C370.064 (2)0.067 (2)0.073 (3)0.030 (2)0.048 (2)0.036 (2)

Geometric parameters (Å, °)

Pd1—Cl1i2.3120 (7)C21—C221.382 (4)
Pd1—Cl12.3120 (7)C21—C261.406 (4)
Pd1—P1i2.3417 (7)C22—C231.385 (4)
Pd1—P12.3417 (7)C22—H220.9300
P1—C111.826 (3)C23—C241.388 (5)
P1—C311.825 (3)C23—H230.9300
P1—C211.824 (3)C24—C251.367 (5)
O1—C161.386 (3)C24—H240.9300
O1—C171.420 (4)C25—C261.389 (4)
O2—C261.365 (4)C25—H250.9300
O2—C271.415 (4)C27—H27A0.9600
O3—C361.370 (4)C27—H27B0.9600
O3—C371.419 (4)C27—H27C0.9600
C11—C161.394 (4)C31—C321.395 (4)
C11—C121.400 (4)C31—C361.398 (4)
C12—C131.391 (4)C32—C331.388 (4)
C12—H120.9300C32—H320.9300
C13—C141.373 (5)C33—C341.368 (5)
C13—H130.9300C33—H330.9300
C14—C151.384 (5)C34—C351.383 (5)
C14—H140.9300C34—H340.9300
C15—C161.395 (4)C35—C361.388 (4)
C15—H150.9300C35—H350.9300
C17—H17A0.9600C37—H37A0.9600
C17—H17B0.9600C37—H37B0.9600
C17—H17C0.9600C37—H37C0.9600
Cl1i—Pd1—Cl1180.00 (4)C21—C22—H22119.1
Cl1i—Pd1—P1i85.73 (3)C22—C23—C24118.7 (3)
Cl1—Pd1—P1i94.27 (3)C22—C23—H23120.7
Cl1i—Pd1—P194.27 (3)C24—C23—H23120.7
Cl1—Pd1—P185.73 (3)C25—C24—C23120.9 (3)
P1i—Pd1—P1180.0C25—C24—H24119.5
C11—P1—C31107.32 (13)C23—C24—H24119.5
C11—P1—C21102.23 (13)C24—C25—C26120.2 (3)
C31—P1—C21107.11 (13)C24—C25—H25119.9
C11—P1—Pd1112.29 (9)C26—C25—H25119.9
C31—P1—Pd1109.33 (9)O2—C26—C25124.9 (3)
C21—P1—Pd1117.89 (9)O2—C26—C21115.1 (3)
C16—O1—C17117.7 (2)C25—C26—C21120.0 (3)
C26—O2—C27119.1 (3)O2—C27—H27A109.5
C36—O3—C37119.0 (2)O2—C27—H27B109.5
C16—C11—C12118.9 (2)H27A—C27—H27B109.5
C16—C11—P1122.1 (2)O2—C27—H27C109.5
C12—C11—P1118.1 (2)H27A—C27—H27C109.5
C13—C12—C11120.2 (3)H27B—C27—H27C109.5
C13—C12—H12119.9C32—C31—C36118.6 (3)
C11—C12—H12119.9C32—C31—P1121.6 (2)
C14—C13—C12120.4 (3)C36—C31—P1119.3 (2)
C14—C13—H13119.8C33—C32—C31120.7 (3)
C12—C13—H13119.8C33—C32—H32119.7
C13—C14—C15120.2 (3)C31—C32—H32119.7
C13—C14—H14119.9C34—C33—C32119.8 (3)
C15—C14—H14119.9C34—C33—H33120.1
C14—C15—C16120.1 (3)C32—C33—H33120.1
C14—C15—H15120.0C33—C34—C35120.9 (3)
C16—C15—H15120.0C33—C34—H34119.5
O1—C16—C11117.3 (2)C35—C34—H34119.5
O1—C16—C15122.4 (3)C34—C35—C36119.6 (3)
C11—C16—C15120.2 (3)C34—C35—H35120.2
O1—C17—H17A109.5C36—C35—H35120.2
O1—C17—H17B109.5O3—C36—C35124.1 (3)
H17A—C17—H17B109.5O3—C36—C31115.5 (2)
O1—C17—H17C109.5C35—C36—C31120.4 (3)
H17A—C17—H17C109.5O3—C37—H37A109.5
H17B—C17—H17C109.5O3—C37—H37B109.5
C22—C21—C26118.3 (3)H37A—C37—H37B109.5
C22—C21—P1123.9 (2)O3—C37—H37C109.5
C26—C21—P1117.8 (2)H37A—C37—H37C109.5
C23—C22—C21121.8 (3)H37B—C37—H37C109.5
C23—C22—H22119.1

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2163).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (1999). SMART-NT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2008). APEX2 AXScale and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Robertson, R. A. M. & Cole-Hamilton, D. J. (2002). Coord. Chem. Rev 225, 67–90.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Van Leeuwen, P. W. N. M., Zuideveld, M. A., Swennenhuis, B. H., Freixa, Z., Kamer, P. C. J., Goubitz, K., Fraanje, J., Lutz, M. & Spek, A. L. (2003). J. Am. Chem. Soc 125, 5523–5539. [PubMed]
  • Westrip, S. P. (2009). publCIF. In preparation.
  • Williams, D. B. G., Shaw, M. L., Green, M. J. & Holzapfel, C. W. (2008). Angew. Chem. Int. Ed 47, 560–563. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography