PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2793.
Published online 2009 October 17. doi:  10.1107/S1600536809041555
PMCID: PMC2971163

1-Chloro­acetyl-r-2,c-6-bis­(4-methoxy­phen­yl)-c-3,t-3-dimethyl­piperidin-4-one

Abstract

In the title compound, C23H26ClNO4, the piperidine ring adopts a distorted boat conformation. The two methoxy­phenyl groups at the 2 and 6 positions of the piperidine ring are in axial and equatorial orientations. An intra­molecular C—H(...)Cl inter­action is observed. In the crystal, the mol­ecules are linked into zigzag chains along the b axis by C—H(...)π inter­molecular inter­actions.

Related literature

For general background to piperidine derivatives, see: Bochringer & Soehne (1961 [triangle]); Ganellin & Spickett (1965 [triangle]); Mobio et al. (1990 [triangle]); Severs et al. (1965 [triangle]). For hybridization, see: Beddoes et al. (1986 [triangle]). For ring conformational analysis, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2793-scheme1.jpg

Experimental

Crystal data

  • C23H26ClNO4
  • M r = 415.90
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2793-efi1.jpg
  • a = 12.5928 (4) Å
  • b = 9.4141 (3) Å
  • c = 17.9070 (6) Å
  • β = 90.826 (1)°
  • V = 2122.65 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 293 K
  • 0.18 × 0.17 × 0.16 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.967, T max = 0.971
  • 28132 measured reflections
  • 6666 independent reflections
  • 4339 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.143
  • S = 1.01
  • 6666 reflections
  • 266 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041555/ci2910sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041555/ci2910Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Piperidine derivatives are the intermediate products in agrochemicals, pharmaceuticals, rubber vulcanization accelerators and are widely used as building block molecules in many industries. Several 2,6-disubstituted piperidines are found to be useful as tranquilisers (Bochringer & Soehne, 1961) and possess hyposensitive activity (Severs et al., 1965), and a combination of stimulant and depressant effects on the central nerves system (Ganellin & Spickett, 1965), as well as bactericidal, fungicidal and herbicidal activities (Mobio et al., 1990).

The piperidine ring adopts a distorted boat conformation (Fig. 1). The C2 and C5 atoms deviate by 0.661 (2) Å and 0.449 (2) Å, respectively from the N1/C3/C4/C6 plane. The Cremer and Pople (1975) puckering parameters are Q = 0.673 (2)Å, θ = 82.33 (13)° and [var phi] = 75.53 (12)°, and asymmetry parameters Δs(C2) = Δs(C5) = 17.65 (13)° (Nardelli, 1983). The methoxyphenyl rings A(C9-C14) and B(C18-C23) are in axial [C9–C2–C3–C4 = -67.26 (15)°] and equatorial [C4–C5–C6–C18 = 169.34 (12)°] orientations, respectively. The methyl groups at C3 position of the piperidine ring are in equatorial and axial orientations, as can be seen from the torsion angles N1–C2–C3–C16 of -174.25 (13)° and N1–C2–C3–C17 of -54.95 (16)°. The sum of bond angles around atom N1 [359.0°] of the piperidine ring is in accordance with sp2 hybridization (Beddoes et al., 1986). The C═O and C–Cl bonds of the chloroacetyl group are twisted with respect to the C–C bond by an angle of 97.54 (16)°. An intramolecular C–H···Cl interaction is observed.

The crystal packing is controlled by weak C–H···π intermolecular interactions. Atom C24 at (x,y,z) acts as a donar to the C18-C23 phenyl ring (centroid Cg1) of the molecule at (-x,-1/2+y,1/2-z) through H24B, with a H···Cg1 separation of 2.78Å. The C–H···π interactions form a zig-zag chain along the b axis, as shown in Fig. 2.

Experimental

r-2,c-6-Bis(4-methoxyphenyl)-c-3,t-3-dimethylpiperidin-4-one (2 g) was dissolved in benzene (30 ml). To this solution triethylamine (2 ml) and chloroacetylchloride (0.90 ml) were added and the reaction mixture was allowed to reflux on a water bath for 8 h. The organic layer was dried over anhydrous sodium sulphate, and concentrated. The resulting mass was purified by recrystallisation from petroleum ether (60-80°C).

Refinement

H atoms were positioned geometrically (C-H = 0.93 - 0.98Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
Crystal packing of the title compound, viewed approximately along the c axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

Crystal data

C23H26ClNO4F(000) = 880
Mr = 415.90Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6666 reflections
a = 12.5928 (4) Åθ = 1.6–30.9°
b = 9.4141 (3) ŵ = 0.21 mm1
c = 17.9070 (6) ÅT = 293 K
β = 90.826 (1)°Block, colourless
V = 2122.65 (12) Å30.18 × 0.17 × 0.16 mm
Z = 4

Data collection

Bruker Kappa APEXII area-detector diffractometer6666 independent reflections
Radiation source: fine-focus sealed tube4339 reflections with I > 2σ(I)
graphiteRint = 0.030
ω and [var phi] scansθmax = 30.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)h = −18→18
Tmin = 0.967, Tmax = 0.971k = −8→13
28132 measured reflectionsl = −25→25

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0584P)2 + 0.6368P] where P = (Fo2 + 2Fc2)/3
6666 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.67796 (11)0.51678 (14)0.45686 (8)0.0334 (3)
H20.61250.52480.48550.040*
C30.75746 (12)0.62207 (15)0.49301 (8)0.0384 (3)
C40.86517 (12)0.60541 (15)0.45768 (8)0.0379 (3)
C50.88574 (11)0.46526 (15)0.41983 (9)0.0365 (3)
H5A0.96170.44780.42110.044*
H5B0.86420.47360.36780.044*
C60.82990 (10)0.33570 (14)0.45296 (8)0.0311 (3)
H60.86600.31140.50010.037*
C70.65532 (12)0.27982 (16)0.50811 (8)0.0383 (3)
C80.70342 (13)0.14302 (16)0.53726 (9)0.0449 (4)
H8A0.75150.10440.50060.054*
H8B0.64760.07390.54540.054*
C90.64596 (11)0.53902 (15)0.37535 (8)0.0349 (3)
C100.69598 (13)0.62843 (17)0.32557 (9)0.0437 (4)
H100.75340.68260.34200.052*
C110.66241 (14)0.63895 (19)0.25190 (10)0.0510 (4)
H110.69710.70000.21950.061*
C120.57764 (14)0.5591 (2)0.22634 (9)0.0480 (4)
C130.52617 (13)0.4698 (2)0.27464 (10)0.0512 (4)
H130.46890.41560.25790.061*
C140.56023 (12)0.46113 (18)0.34841 (9)0.0439 (4)
H140.52450.40120.38080.053*
C150.46636 (16)0.4921 (3)0.12384 (11)0.0795 (7)
H15A0.48260.39330.13100.119*
H15B0.45660.51090.07150.119*
H15C0.40240.51520.14970.119*
C160.71693 (16)0.77524 (17)0.48942 (11)0.0560 (5)
H16A0.76690.83680.51420.084*
H16B0.64950.78130.51360.084*
H16C0.70890.80370.43820.084*
C170.77419 (16)0.5830 (2)0.57605 (9)0.0532 (4)
H17A0.80680.49110.57970.080*
H17B0.70680.58130.60040.080*
H17C0.81930.65240.59960.080*
C180.84238 (11)0.21143 (14)0.39983 (8)0.0316 (3)
C190.92043 (12)0.11115 (16)0.41388 (8)0.0375 (3)
H190.96280.11960.45660.045*
C200.93692 (12)−0.00147 (16)0.36576 (9)0.0398 (3)
H200.9899−0.06770.37600.048*
C210.87401 (12)−0.01445 (16)0.30252 (8)0.0396 (3)
C220.79620 (12)0.08571 (18)0.28752 (9)0.0426 (3)
H220.75400.07730.24470.051*
C230.78075 (11)0.19756 (16)0.33546 (8)0.0383 (3)
H230.72850.26460.32460.046*
C240.96836 (19)−0.2174 (2)0.25982 (12)0.0725 (6)
H24A1.0340−0.16570.25860.109*
H24B0.9664−0.28510.21980.109*
H24C0.9630−0.26620.30670.109*
Cl10.77329 (5)0.17452 (7)0.62195 (3)0.0835 (2)
N10.71792 (9)0.36987 (12)0.46958 (6)0.0315 (2)
O10.56230 (9)0.30440 (14)0.52104 (8)0.0578 (3)
O20.55150 (11)0.57620 (17)0.15243 (7)0.0681 (4)
O30.93212 (10)0.69712 (12)0.45950 (7)0.0550 (3)
O40.88237 (11)−0.12170 (14)0.25156 (7)0.0596 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0350 (7)0.0274 (7)0.0379 (7)0.0050 (5)0.0009 (5)−0.0015 (5)
C30.0464 (8)0.0270 (7)0.0417 (8)0.0035 (6)−0.0056 (6)−0.0044 (6)
C40.0418 (8)0.0291 (7)0.0423 (8)−0.0017 (6)−0.0119 (6)0.0027 (6)
C50.0327 (7)0.0304 (7)0.0465 (8)−0.0016 (5)0.0016 (6)0.0003 (6)
C60.0308 (6)0.0267 (6)0.0357 (7)0.0028 (5)−0.0001 (5)−0.0001 (5)
C70.0402 (8)0.0332 (7)0.0416 (8)−0.0004 (6)0.0064 (6)−0.0003 (6)
C80.0522 (9)0.0340 (8)0.0487 (9)−0.0010 (7)0.0108 (7)0.0069 (7)
C90.0337 (7)0.0306 (7)0.0403 (7)0.0056 (5)−0.0024 (6)−0.0017 (6)
C100.0457 (9)0.0375 (8)0.0477 (9)−0.0046 (7)−0.0070 (7)0.0052 (7)
C110.0558 (10)0.0503 (10)0.0469 (9)−0.0004 (8)−0.0009 (7)0.0113 (7)
C120.0490 (9)0.0542 (10)0.0404 (8)0.0116 (8)−0.0067 (7)−0.0022 (7)
C130.0422 (9)0.0585 (11)0.0526 (10)−0.0019 (8)−0.0102 (7)−0.0074 (8)
C140.0379 (8)0.0472 (9)0.0465 (9)−0.0026 (7)−0.0017 (6)0.0023 (7)
C150.0526 (11)0.136 (2)0.0490 (11)0.0212 (13)−0.0153 (9)−0.0217 (12)
C160.0656 (11)0.0311 (8)0.0710 (12)0.0096 (8)−0.0080 (9)−0.0120 (8)
C170.0717 (12)0.0488 (10)0.0389 (8)0.0001 (9)−0.0053 (8)−0.0079 (7)
C180.0323 (7)0.0264 (6)0.0361 (7)−0.0001 (5)0.0051 (5)0.0008 (5)
C190.0417 (8)0.0329 (7)0.0379 (7)0.0053 (6)−0.0003 (6)0.0012 (6)
C200.0442 (8)0.0311 (7)0.0444 (8)0.0096 (6)0.0068 (6)0.0012 (6)
C210.0458 (8)0.0329 (7)0.0403 (8)−0.0009 (6)0.0113 (6)−0.0060 (6)
C220.0423 (8)0.0461 (9)0.0395 (8)0.0011 (7)−0.0011 (6)−0.0084 (7)
C230.0351 (7)0.0376 (8)0.0422 (8)0.0055 (6)−0.0010 (6)−0.0029 (6)
C240.0957 (16)0.0581 (12)0.0642 (13)0.0275 (11)0.0172 (11)−0.0180 (10)
Cl10.1001 (5)0.0783 (4)0.0713 (4)−0.0053 (3)−0.0267 (3)0.0256 (3)
N10.0323 (6)0.0261 (5)0.0361 (6)0.0023 (4)0.0033 (4)−0.0003 (4)
O10.0417 (6)0.0531 (8)0.0791 (9)0.0033 (5)0.0185 (6)0.0133 (6)
O20.0717 (9)0.0898 (11)0.0424 (7)0.0092 (8)−0.0137 (6)0.0000 (7)
O30.0534 (7)0.0374 (6)0.0738 (8)−0.0140 (5)−0.0131 (6)−0.0006 (6)
O40.0735 (9)0.0494 (7)0.0559 (7)0.0119 (6)0.0033 (6)−0.0223 (6)

Geometric parameters (Å, °)

C2—N11.4881 (17)C13—C141.385 (2)
C2—C91.5231 (19)C13—H130.93
C2—C31.544 (2)C14—H140.93
C2—H20.98C15—O21.422 (3)
C3—C41.513 (2)C15—H15A0.96
C3—C161.531 (2)C15—H15B0.96
C3—C171.543 (2)C15—H15C0.96
C4—O31.2068 (18)C16—H16A0.96
C4—C51.507 (2)C16—H16B0.96
C5—C61.5317 (19)C16—H16C0.96
C5—H5A0.97C17—H17A0.96
C5—H5B0.97C17—H17B0.96
C6—N11.4808 (17)C17—H17C0.96
C6—C181.5174 (19)C18—C191.3832 (19)
C6—H60.98C18—C231.386 (2)
C7—O11.2195 (18)C19—C201.384 (2)
C7—N11.3534 (18)C19—H190.93
C7—C81.513 (2)C20—C211.378 (2)
C8—Cl11.7672 (18)C20—H200.93
C8—H8A0.97C21—O41.3659 (18)
C8—H8B0.97C21—C221.383 (2)
C9—C101.384 (2)C22—C231.374 (2)
C9—C141.386 (2)C22—H220.93
C10—C111.383 (2)C23—H230.93
C10—H100.93C24—O41.414 (2)
C11—C121.378 (2)C24—H24A0.96
C11—H110.93C24—H24B0.96
C12—O21.3688 (19)C24—H24C0.96
C12—C131.375 (3)
N1—C2—C9111.02 (11)C13—C14—C9121.97 (16)
N1—C2—C3108.46 (11)C13—C14—H14119.0
C9—C2—C3118.32 (12)C9—C14—H14119.0
N1—C2—H2106.1O2—C15—H15A109.5
C9—C2—H2106.1O2—C15—H15B109.5
C3—C2—H2106.1H15A—C15—H15B109.5
C4—C3—C16112.36 (14)O2—C15—H15C109.5
C4—C3—C17105.51 (12)H15A—C15—H15C109.5
C16—C3—C17107.79 (13)H15B—C15—H15C109.5
C4—C3—C2109.75 (11)C3—C16—H16A109.5
C16—C3—C2111.92 (12)C3—C16—H16B109.5
C17—C3—C2109.24 (13)H16A—C16—H16B109.5
O3—C4—C5120.92 (15)C3—C16—H16C109.5
O3—C4—C3123.00 (14)H16A—C16—H16C109.5
C5—C4—C3116.08 (12)H16B—C16—H16C109.5
C4—C5—C6116.10 (12)C3—C17—H17A109.5
C4—C5—H5A108.3C3—C17—H17B109.5
C6—C5—H5A108.3H17A—C17—H17B109.5
C4—C5—H5B108.3C3—C17—H17C109.5
C6—C5—H5B108.3H17A—C17—H17C109.5
H5A—C5—H5B107.4H17B—C17—H17C109.5
N1—C6—C18113.65 (11)C19—C18—C23118.34 (13)
N1—C6—C5110.41 (11)C19—C18—C6119.47 (12)
C18—C6—C5108.59 (11)C23—C18—C6122.14 (12)
N1—C6—H6108.0C18—C19—C20121.49 (14)
C18—C6—H6108.0C18—C19—H19119.3
C5—C6—H6108.0C20—C19—H19119.3
O1—C7—N1123.10 (14)C21—C20—C19119.34 (13)
O1—C7—C8118.48 (14)C21—C20—H20120.3
N1—C7—C8118.41 (13)C19—C20—H20120.3
C7—C8—Cl1110.19 (11)O4—C21—C20124.44 (14)
C7—C8—H8A109.6O4—C21—C22115.81 (14)
Cl1—C8—H8A109.6C20—C21—C22119.75 (13)
C7—C8—H8B109.6C23—C22—C21120.48 (14)
Cl1—C8—H8B109.6C23—C22—H22119.8
H8A—C8—H8B108.1C21—C22—H22119.8
C10—C9—C14117.19 (14)C22—C23—C18120.59 (14)
C10—C9—C2125.75 (13)C22—C23—H23119.7
C14—C9—C2117.05 (13)C18—C23—H23119.7
C11—C10—C9121.48 (15)O4—C24—H24A109.5
C11—C10—H10119.3O4—C24—H24B109.5
C9—C10—H10119.3H24A—C24—H24B109.5
C12—C11—C10120.16 (16)O4—C24—H24C109.5
C12—C11—H11119.9H24A—C24—H24C109.5
C10—C11—H11119.9H24B—C24—H24C109.5
O2—C12—C13124.82 (16)C7—N1—C6121.99 (11)
O2—C12—C11115.56 (17)C7—N1—C2117.51 (11)
C13—C12—C11119.62 (15)C6—N1—C2119.47 (11)
C12—C13—C14119.57 (16)C12—O2—C15116.88 (17)
C12—C13—H13120.2C21—O4—C24117.84 (15)
C14—C13—H13120.2
N1—C2—C3—C460.28 (14)C2—C9—C14—C13−178.09 (14)
C9—C2—C3—C4−67.26 (15)N1—C6—C18—C19−137.78 (13)
N1—C2—C3—C16−174.25 (13)C5—C6—C18—C1998.93 (15)
C9—C2—C3—C1658.21 (18)N1—C6—C18—C2344.94 (18)
N1—C2—C3—C17−54.95 (16)C5—C6—C18—C23−78.35 (16)
C9—C2—C3—C17177.50 (12)C23—C18—C19—C20−0.6 (2)
C16—C3—C4—O333.4 (2)C6—C18—C19—C20−177.94 (13)
C17—C3—C4—O3−83.83 (17)C18—C19—C20—C21−0.2 (2)
C2—C3—C4—O3158.58 (14)C19—C20—C21—O4−179.33 (14)
C16—C3—C4—C5−147.13 (13)C19—C20—C21—C220.7 (2)
C17—C3—C4—C595.66 (15)O4—C21—C22—C23179.63 (14)
C2—C3—C4—C5−21.92 (16)C20—C21—C22—C23−0.4 (2)
O3—C4—C5—C6148.60 (14)C21—C22—C23—C18−0.4 (2)
C3—C4—C5—C6−30.90 (17)C19—C18—C23—C220.9 (2)
C4—C5—C6—N144.12 (16)C6—C18—C23—C22178.18 (14)
C4—C5—C6—C18169.34 (12)O1—C7—N1—C6−178.38 (14)
O1—C7—C8—Cl1−97.54 (16)C8—C7—N1—C62.4 (2)
N1—C7—C8—Cl181.75 (15)O1—C7—N1—C213.2 (2)
N1—C2—C9—C10−113.18 (16)C8—C7—N1—C2−166.01 (12)
C3—C2—C9—C1013.1 (2)C18—C6—N1—C766.53 (17)
N1—C2—C9—C1465.74 (16)C5—C6—N1—C7−171.18 (12)
C3—C2—C9—C14−167.94 (13)C18—C6—N1—C2−125.32 (13)
C14—C9—C10—C11−0.5 (2)C5—C6—N1—C2−3.03 (16)
C2—C9—C10—C11178.46 (15)C9—C2—N1—C7−108.37 (14)
C9—C10—C11—C12−0.2 (3)C3—C2—N1—C7120.03 (14)
C10—C11—C12—O2−179.32 (16)C9—C2—N1—C682.95 (14)
C10—C11—C12—C130.5 (3)C3—C2—N1—C6−48.65 (16)
O2—C12—C13—C14179.75 (16)C13—C12—O2—C15−1.6 (3)
C11—C12—C13—C140.0 (3)C11—C12—O2—C15178.17 (17)
C12—C13—C14—C9−0.7 (3)C20—C21—O4—C24−7.1 (2)
C10—C9—C14—C130.9 (2)C22—C21—O4—C24172.90 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···Cl10.982.803.4684 (15)126
C24—H24B···Cg1i0.962.783.438 (2)126

Symmetry codes: (i) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2910).

References

  • Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  • Bochringer, C. F. & Soehne, G. M. B. H. (1961). Chem. Abstr.55, 24796.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Ganellin, C. R. & Spickett, R. G. W. (1965). J. Med. Chem.8, 619–625. [PubMed]
  • Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1990). Khim. Farm. Zh. Chem. Abstr.112, 733
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Severs, W. B., Kinnard, W. J. & Buckely, J. P. (1965). Chem. Abstr 63, 10538.
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography