PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1389–m1390.
Published online 2009 October 17. doi:  10.1107/S1600536809041932
PMCID: PMC2971160

Bis(1-carbamimidoyl-2-ethyl­isourea)copper(II) dinitrate

Abstract

The copper(II) complex, [Cu(C4H10N4O)2](NO3)2 or [Cu(L 1e)2](NO3)2, where L 1e is 1-carbamimidoyl-2-ethyl­isourea, was obtained from a 1:2 molar ratio of copper(II) nitrate hemipenta­hydrate with 2-cyano­guanidine in ethanol. The crystal structure consists of the centrosymmetric [Cu(L 1e)2]2+ cation and two NO3 counter-anions. The cation exhibits four-coordinate bonding of the two N,N-bidentate ligands and the CuII atom through the N-donor atoms, yielding a square-planar CuN4 geometry. Inter­molecular N—H(...)O hydrogen bonds link between the cation and and counter-anion, forming a two-dimentional layered structure extending parallel to (An external file that holds a picture, illustration, etc.
Object name is e-65-m1389-efi1.jpg01).

Related literature

For a copper(II) complex containg the same N,N-bidentate 1-carbamimidoyl-2-ethyl­isourea ligand but with the charge balance provided by two chloride and perchlorate anions, see: Begley et al. (1986 [triangle]); Meenongwa et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1389-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H10N4O)2](NO3)2
  • M r = 447.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1389-efi2.jpg
  • a = 5.2547 (6) Å
  • b = 14.0087 (15) Å
  • c = 12.1511 (13) Å
  • β = 96.982 (2)°
  • V = 887.83 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.29 mm−1
  • T = 293 K
  • 0.26 × 0.16 × 0.11 mm

Data collection

  • Bruker SMART APEX CCD area detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.793, T max = 1.00
  • 11998 measured reflections
  • 2206 independent reflections
  • 1810 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.102
  • S = 1.05
  • 2206 reflections
  • 125 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]) and publCIF (Westrip, 2009 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041932/ds2008sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041932/ds2008Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully thank the Thailand Research Fund (TRF), Khon Kaen University, the Center of Excellence for Innovation in Chemistry (PERCH-CIC) and the Development and Promotion of Science and Technology talent project (DPST) for financial support.

supplementary crystallographic information

Comment

Herein, we report the structure of [Cu(L1e)2](NO3)2, which was obtained from the similar procedure as previously reported by Meenongwa et al. (2009), but using copper(II) nitrate hemipentahydrate. Structural determination on the title complex reveals a centrosymmetric [Cu(L1e)2]2+ cation and two NO3- counteranions. Fig. 1 shows the [Cu(L1e)2]2+ moiety. The square-planar CuN4 geometry is yielded by the coordination of the two N,N-bidentate ligands (Table 1) with Cu— N bond distances of 1.9313 (16) - 1.9650 (17) Å. Moreover, NO3- anions also contact to the neighboring cationic units by various hydrogen bonds of the type N—H···O (nitrate) to give a two dimentional layered structure (Fig. 2) as observed in the previuos [Cu(L1e)2](ClO4)2 complex.

Experimental

The initial product of the title complex was obtained from the reaction of 2-cyanoguanidine (0.1682 g, 2 mmol, Aldrich, 99%) with copper(II) nitrate hemipentahydrate (0.2325 g, 1 mmol, Sigma-Aldrich, 98%). The reaction was carried out in ethanol under refluxing condition for 24 h. The reddish-pink precipitate thus formed was isolated by filtration. The red block shaped single crystals were grown by slow vapor phase diffusion of methanol-ethanol solution of this products into toluene medium at room temperature for a week.

Refinement

The crystal structure refinement was initially performed by direct method to locate the structural model. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined as riding atoms, with N—H = 0.86, CH(methyl) = 0.96 and CH(methylene) = 0.97 Å, and approximation with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H atoms and 1.2 for all others.

Figures

Fig. 1.
View of the title copper(II) complex, showing the atom numbering of the cationic [Cu(L1e)2]2+ moiety of [Cu(L1e)2](NO3)2. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal structure of [Cu(L1e)2](NO3)2 showing the linking of [Cu(L1e)2]2+ cation and NO3- counteranion along b axis. Hydrogen bonds are presented as a dashed lines.

Crystal data

[Cu(C4H10N4O)2](NO3)2F(000) = 462
Mr = 447.89Dx = 1.675 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4098 reflections
a = 5.2547 (6) Åθ = 2.9–27.1°
b = 14.0087 (15) ŵ = 1.29 mm1
c = 12.1511 (13) ÅT = 293 K
β = 96.982 (2)°Block, red
V = 887.83 (17) Å30.26 × 0.16 × 0.11 mm
Z = 2

Data collection

Bruker SMART APEX CCD area detector diffractometer2206 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
graphiteRint = 0.028
Frames each covering 0.3 ° in ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −7→7
Tmin = 0.793, Tmax = 1.00k = −18→18
11998 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2477P] where P = (Fo2 + 2Fc2)/3
2206 reflections(Δ/σ)max < 0.001
125 parametersΔρmax = 0.73 e Å3
3 restraintsΔρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.50000.00000.0348 (3)
N10.3075 (8)0.5323 (3)0.0966 (4)0.0406 (10)
H10.33110.59250.10700.049*
N20.0819 (9)0.3645 (3)0.0282 (4)0.0434 (11)
H2−0.02400.3241−0.00500.052*
N30.4651 (8)0.3829 (3)0.1454 (4)0.0408 (10)
H30.58790.35200.18290.049*
O10.3213 (8)0.2382 (3)0.1101 (4)0.0516 (11)
N40.6968 (10)0.5138 (3)0.2062 (5)0.0541 (14)
H440.72220.57440.21070.065*
H450.80840.47510.23910.065*
C10.4823 (10)0.4794 (4)0.1477 (5)0.0378 (11)
C30.1450 (12)0.1670 (3)0.0590 (5)0.0506 (14)
H310.12500.1730−0.02110.061*
H32−0.02190.17330.08470.061*
C20.2729 (9)0.3293 (4)0.0898 (4)0.0383 (11)
N50.9978 (9)0.2854 (3)0.3317 (4)0.0479 (11)
O21.1439 (11)0.2388 (4)0.3966 (5)0.090 (2)
C40.2662 (17)0.0734 (4)0.0945 (7)0.075 (2)
H410.42910.06810.06680.113*
H430.15670.02220.06540.113*
H420.29040.07000.17400.113*
O40.8192 (10)0.2461 (4)0.2742 (4)0.0705 (14)
O31.0295 (12)0.3715 (3)0.3254 (5)0.0863 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0290 (5)0.0239 (5)0.0475 (6)0.0021 (3)−0.0123 (3)0.0011 (3)
N10.034 (2)0.0256 (19)0.057 (3)0.0008 (17)−0.0160 (19)−0.0010 (18)
N20.038 (2)0.0252 (19)0.061 (3)−0.0003 (17)−0.0196 (19)−0.0003 (18)
N30.032 (2)0.029 (2)0.055 (3)0.0029 (16)−0.0159 (18)0.0043 (18)
O10.048 (2)0.0249 (17)0.075 (3)0.0016 (15)−0.0226 (19)0.0038 (17)
N40.041 (3)0.035 (2)0.077 (4)−0.0022 (18)−0.029 (3)0.002 (2)
C10.032 (2)0.031 (2)0.047 (3)−0.0008 (18)−0.008 (2)−0.0002 (19)
C30.053 (3)0.027 (2)0.066 (4)−0.001 (2)−0.017 (3)−0.001 (2)
C20.035 (2)0.027 (2)0.050 (3)0.0019 (18)−0.008 (2)0.0025 (19)
N50.049 (3)0.035 (2)0.056 (3)0.0082 (19)−0.011 (2)0.005 (2)
O20.090 (4)0.043 (3)0.119 (5)0.006 (3)−0.064 (3)0.012 (3)
C40.084 (5)0.031 (3)0.103 (6)0.004 (3)−0.026 (4)0.002 (3)
O40.057 (3)0.059 (3)0.086 (3)−0.001 (2)−0.029 (2)0.000 (2)
O30.102 (4)0.032 (2)0.117 (5)0.004 (2)−0.023 (3)0.015 (3)

Geometric parameters (Å, °)

Cu1—N11.932 (4)N4—C11.347 (7)
Cu1—N1i1.932 (4)N4—H440.8600
Cu1—N21.967 (4)N4—H450.8600
Cu1—N2i1.967 (4)C3—C41.498 (8)
N1—C11.281 (7)C3—H310.9700
N1—H10.8600C3—H320.9700
N2—C21.276 (6)N5—O31.221 (6)
N2—H20.8600N5—O21.221 (6)
N3—C11.355 (7)N5—O41.230 (6)
N3—C21.369 (6)C4—H410.9600
N3—H30.8600C4—H430.9600
O1—C21.319 (6)C4—H420.9600
O1—C31.449 (6)
N1—Cu1—N1i180.0N1—C1—N3121.7 (5)
N1—Cu1—N288.33 (19)N4—C1—N3114.7 (5)
N1i—Cu1—N291.67 (19)O1—C3—C4104.6 (5)
N1—Cu1—N2i91.67 (19)O1—C3—H31110.8
N1i—Cu1—N2i88.33 (19)C4—C3—H31110.8
N2—Cu1—N2i179.999 (1)O1—C3—H32110.8
C1—N1—Cu1131.1 (4)C4—C3—H32110.8
C1—N1—H1114.5H31—C3—H32108.9
Cu1—N1—H1114.5N2—C2—O1127.1 (5)
C2—N2—Cu1128.0 (4)N2—C2—N3123.9 (4)
C2—N2—H2116.0O1—C2—N3108.9 (4)
Cu1—N2—H2116.0O3—N5—O2119.3 (6)
C1—N3—C2126.9 (4)O3—N5—O4120.5 (5)
C1—N3—H3116.6O2—N5—O4120.3 (5)
C2—N3—H3116.6C3—C4—H41109.5
C2—O1—C3119.2 (4)C3—C4—H43109.5
C1—N4—H44120.0H41—C4—H43109.5
C1—N4—H45120.0C3—C4—H42109.5
H44—N4—H45120.0H41—C4—H42109.5
N1—C1—N4123.7 (5)H43—C4—H42109.5
N2—Cu1—N1—C13.1 (6)C2—O1—C3—C4176.9 (6)
N2i—Cu1—N1—C1−176.9 (6)Cu1—N2—C2—O1178.1 (4)
N1—Cu1—N2—C20.4 (5)Cu1—N2—C2—N3−2.6 (9)
N1i—Cu1—N2—C2−179.6 (5)C3—O1—C2—N20.1 (9)
Cu1—N1—C1—N4174.9 (5)C3—O1—C2—N3−179.3 (5)
Cu1—N1—C1—N3−4.2 (9)C1—N3—C2—N22.1 (10)
C2—N3—C1—N11.3 (10)C1—N3—C2—O1−178.5 (5)
C2—N3—C1—N4−177.9 (6)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.862.052.904 (7)170
N2—H2···O2iii0.862.183.009 (6)163
N3—H3···O40.862.142.979 (6)165
N4—H45···O30.862.062.917 (7)171

Symmetry codes: (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2008).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Begley, M. J., Hubberstey, P. & Moore, C. H. M. (1986). J. Chem. Res. (S), pp. 172–173.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Meenongwa, A., Chaveerach, U., Wilson, C. & Blake, A. J. (2009). Acta Cryst. E65, m1171. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography