PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2950.
Published online 2009 October 31. doi:  10.1107/S1600536809045000
PMCID: PMC2971158

4,4′-Bipyridine–pyroglutamic acid (1/2)

Abstract

In the title co-crystal, C10H8N2·2C5H7NO3, the 4,4′-bipyridine mol­ecule [dihedral angle between the pyridine rings = 36.33 (11)°] accepts O—H(...)N hydrogen bonds from the two pyroglutamic (pga) acid mol­ecules. The pga mol­ecules at each end of the trimeric aggregate self-associate via centrosymmetric eight-membered amide {(...)HNCO}2 synthons, so that the crystal structure comprises one-dimensional supra­molecular chains propagating in [13An external file that holds a picture, illustration, etc.
Object name is e-65-o2950-efi1.jpg]. C—H(...)O and π–π stacking inter­actions [centroid–centroid separation = 3.590 (2) Å] consolidate the structure.

Related literature

For background to the co-crystallization of active pharmaceutical agents and discussion on the definition of a co-crystal, see: Shan & Zaworotko (2008 [triangle]); Zukerman-Schpector & Tiekink (2008 [triangle]). For related studies on co-crystal formation, see: Broker & Tiekink (2007 [triangle]); Broker et al. (2008 [triangle]); Ellis et al. (2009 [triangle]). For structure analysis, see: Spek (2009 [triangle]). For hydrogen-bonding considerations, see: Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2950-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·2C5H7NO3
  • M r = 414.42
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2950-efi2.jpg
  • a = 7.444 (3) Å
  • b = 11.511 (4) Å
  • c = 12.845 (4) Å
  • α = 66.274 (17)°
  • β = 74.203 (17)°
  • γ = 86.91 (2)°
  • V = 967.6 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 98 K
  • 0.22 × 0.15 × 0.12 mm

Data collection

  • Rigaku Saturn724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.706, T max = 1.000
  • 5618 measured reflections
  • 3375 independent reflections
  • 2851 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.128
  • S = 1.16
  • 3375 reflections
  • 281 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045000/hb5194sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045000/hb5194Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008); see Zukerman-Schpector & Tiekink (2008) for a discussion of terminology. As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2007; Broker et al., 2008; Ellis et al., 2009), the co-crystallization of DL-pyroglutamic acid with 4,4'-bipyridine was investigated.

The title co-crystal, (I), comprises two molecules of pyroglutamic acid and one of 4,4'-bipyridine, Fig. 1. The independent molecules of pyroglutamic acid are virtually identical with RMS values for bond distances and angles of 0.006 Å and 0.552 °, respectively (Spek, 2009). The connections between molecules are hydrogen bonds of the type O–H···N, Table 1, in accord with the strongest donor associating with the strongest acceptor (Etter, 1990).

The trimeric aggregates associate into a supramolecular chain via eight-membered amide {···HNCO}2 synthons. The most convenient description of the chain is given in the following terms. Centrosymmetrically related pyroglutamic acid molecules are connected by the {···HNCO}2 synthons and these are bridged by the 4,4'-bipyridine molecules, Table 1 and Fig. 2. The supramolecular chains have a base vector [1 3 - 2] in which alternate 4,4'-bipyridine molecules are connected to pyroglutamic acid molecules of the same chirality.

The chains are consolidated into the 3-D crystal structure by a large number of C–H···O contacts, the shortest two are listed in Table 1, as well as π···π interactions involving both pyridyl rings [the closest Cg···Cgi = 3.590 (2) Å where Cg is the ring centroid of N2, C16—C20 for i: 2 - x, -y, 1 - z].

Experimental

Colourless crystals of (I) were isolated from the co-crystallization of 1 molar equivalent of DL-pyroglutamic acid (Fluka, 20 mg) and 4,4'-bipyridine (Aldrich, 12 mg) in methanol/ethanol (1/1, 8 ml); m. pt. 425–427 K.

Refinement

The H-atoms were placed in calculated positions (O–H = 0.84 Å, N–H = 0.88 Å and C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(carrier atom).

Figures

Fig. 1.
Molecular structure of the asymmetric unit of (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level. The O–H···N hydrogen bonds are shown as orange dashed lines.
Fig. 2.
Supramolecular chain formation in (I) mediated by O—H···N (orange dashed lines) and N—H···N (blue dashed lines) hydrogen bonding.

Crystal data

C10H8N2·2C5H7NO3Z = 2
Mr = 414.42F(000) = 436
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.444 (3) ÅCell parameters from 3819 reflections
b = 11.511 (4) Åθ = 1.8–40.3°
c = 12.845 (4) ŵ = 0.11 mm1
α = 66.274 (17)°T = 98 K
β = 74.203 (17)°Block, colourless
γ = 86.91 (2)°0.22 × 0.15 × 0.12 mm
V = 967.6 (6) Å3

Data collection

Rigaku Saturn724 diffractometer3375 independent reflections
Radiation source: sealed tube2851 reflections with I > 2σ(I)
graphiteRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 1.8°
ω scansh = −8→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.706, Tmax = 1.000l = −11→15
5618 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0416P)2 + 0.3826P] where P = (Fo2 + 2Fc2)/3
3375 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7958 (3)0.80500 (15)0.34215 (15)0.0306 (4)
H1o0.80710.72620.37060.046*
O20.7021 (3)0.76264 (15)0.20917 (14)0.0300 (4)
O30.6914 (2)1.13445 (15)−0.10317 (14)0.0250 (4)
O40.6382 (2)−0.34079 (15)0.69099 (15)0.0295 (4)
H4o0.6741−0.26350.66050.044*
O50.3864 (2)−0.27410 (15)0.78866 (14)0.0278 (4)
O60.0822 (2)−0.65238 (15)1.10646 (14)0.0263 (4)
N10.6307 (3)1.00631 (18)0.09308 (17)0.0239 (5)
H1N0.53620.95830.10020.027 (7)*
N20.2248 (3)−0.51418 (18)0.91661 (17)0.0233 (5)
H2N0.1380−0.45960.90220.028 (7)*
N30.8270 (3)0.56170 (18)0.42251 (18)0.0266 (5)
N40.7503 (3)−0.10455 (18)0.60996 (17)0.0247 (5)
C10.7328 (3)0.8368 (2)0.24872 (19)0.0217 (5)
C20.7041 (3)0.9777 (2)0.19365 (19)0.0215 (5)
H20.61541.00330.25360.026*
C30.7237 (3)1.1014 (2)−0.0062 (2)0.0218 (5)
C40.8716 (3)1.1608 (2)0.02102 (19)0.0228 (5)
H4A0.83251.24230.02630.027*
H4B0.99211.1764−0.04060.027*
C50.8887 (3)1.0625 (2)0.1407 (2)0.0225 (5)
H5A0.90111.10450.19240.027*
H5B0.99841.01160.13020.027*
C60.4717 (3)−0.3581 (2)0.76693 (19)0.0219 (5)
C70.3977 (3)−0.4950 (2)0.82374 (19)0.0213 (5)
H70.3747−0.52030.76240.026*
C80.2141 (3)−0.6187 (2)1.0153 (2)0.0214 (5)
C90.3900 (3)−0.6883 (2)0.9955 (2)0.0236 (5)
H9A0.3657−0.76190.97880.028*
H9B0.4397−0.71871.06550.028*
C100.5264 (3)−0.5884 (2)0.8884 (2)0.0248 (5)
H10A0.6061−0.62740.83730.030*
H10B0.6074−0.54520.91330.030*
C110.9039 (3)0.5073 (2)0.3470 (2)0.0268 (6)
H110.96530.56050.26740.032*
C120.8973 (3)0.3770 (2)0.3805 (2)0.0243 (5)
H120.95490.34170.32510.029*
C130.8049 (3)0.2985 (2)0.4965 (2)0.0223 (5)
C140.7272 (3)0.3554 (2)0.5749 (2)0.0253 (5)
H140.66590.30470.65520.030*
C150.7406 (3)0.4857 (2)0.5344 (2)0.0273 (6)
H150.68600.52340.58830.033*
C160.7879 (3)0.1585 (2)0.5364 (2)0.0208 (5)
C170.7629 (3)0.1045 (2)0.4611 (2)0.0254 (5)
H170.75900.15700.38290.030*
C180.7440 (3)−0.0258 (2)0.5017 (2)0.0259 (6)
H180.7256−0.06130.45000.031*
C190.7758 (3)−0.0528 (2)0.6826 (2)0.0258 (5)
H190.7810−0.10790.76000.031*
C200.7947 (3)0.0765 (2)0.6494 (2)0.0242 (5)
H200.81210.10930.70320.029*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0477 (12)0.0234 (9)0.0292 (9)0.0069 (8)−0.0215 (9)−0.0126 (8)
O20.0405 (11)0.0279 (9)0.0303 (9)0.0029 (8)−0.0146 (9)−0.0173 (8)
O30.0261 (9)0.0300 (9)0.0229 (9)0.0051 (7)−0.0089 (8)−0.0135 (7)
O40.0262 (10)0.0242 (8)0.0340 (10)−0.0013 (7)0.0038 (8)−0.0151 (8)
O50.0265 (9)0.0257 (9)0.0310 (10)0.0063 (7)−0.0029 (8)−0.0150 (8)
O60.0241 (9)0.0280 (9)0.0226 (9)0.0027 (7)−0.0015 (8)−0.0093 (7)
N10.0239 (11)0.0249 (11)0.0243 (11)0.0001 (9)−0.0090 (9)−0.0097 (9)
N20.0205 (11)0.0244 (10)0.0229 (10)0.0061 (9)−0.0055 (9)−0.0085 (9)
N30.0288 (12)0.0268 (11)0.0284 (11)0.0040 (9)−0.0116 (10)−0.0133 (9)
N40.0194 (11)0.0269 (10)0.0277 (11)0.0034 (9)−0.0023 (9)−0.0140 (9)
C10.0185 (12)0.0278 (12)0.0203 (12)0.0007 (10)−0.0030 (10)−0.0126 (10)
C20.0211 (12)0.0266 (12)0.0209 (12)0.0036 (10)−0.0052 (10)−0.0144 (10)
C30.0222 (13)0.0230 (12)0.0252 (13)0.0081 (10)−0.0071 (11)−0.0151 (10)
C40.0209 (12)0.0264 (12)0.0218 (12)0.0016 (10)−0.0013 (10)−0.0134 (10)
C50.0219 (13)0.0240 (12)0.0260 (12)0.0047 (10)−0.0090 (11)−0.0132 (10)
C60.0229 (13)0.0264 (12)0.0183 (12)0.0031 (10)−0.0053 (10)−0.0113 (10)
C70.0229 (12)0.0238 (12)0.0188 (11)0.0026 (10)−0.0045 (10)−0.0110 (10)
C80.0246 (13)0.0197 (11)0.0231 (12)−0.0007 (10)−0.0072 (11)−0.0111 (10)
C90.0258 (13)0.0245 (12)0.0230 (12)0.0025 (10)−0.0072 (11)−0.0120 (10)
C100.0252 (13)0.0263 (12)0.0255 (12)0.0031 (10)−0.0064 (11)−0.0134 (11)
C110.0287 (14)0.0302 (13)0.0220 (12)0.0026 (11)−0.0090 (11)−0.0097 (11)
C120.0231 (13)0.0297 (12)0.0235 (12)0.0064 (10)−0.0076 (11)−0.0140 (11)
C130.0198 (12)0.0268 (12)0.0250 (12)0.0032 (10)−0.0085 (10)−0.0139 (10)
C140.0240 (13)0.0301 (13)0.0231 (12)0.0006 (10)−0.0040 (11)−0.0136 (11)
C150.0270 (14)0.0303 (13)0.0308 (14)0.0025 (11)−0.0077 (12)−0.0189 (12)
C160.0164 (12)0.0250 (12)0.0219 (12)0.0019 (9)−0.0041 (10)−0.0113 (10)
C170.0289 (13)0.0267 (12)0.0213 (12)0.0035 (11)−0.0056 (11)−0.0115 (10)
C180.0268 (14)0.0297 (13)0.0272 (13)0.0036 (11)−0.0063 (11)−0.0183 (11)
C190.0246 (13)0.0293 (13)0.0220 (12)0.0001 (11)−0.0037 (11)−0.0103 (11)
C200.0204 (12)0.0307 (13)0.0239 (12)0.0002 (10)−0.0038 (11)−0.0148 (11)

Geometric parameters (Å, °)

O1—C11.314 (3)C6—C71.506 (3)
O1—H1o0.8400C7—C101.538 (3)
O2—C11.213 (3)C7—H71.0000
O3—C31.235 (3)C8—C91.514 (3)
O4—C61.319 (3)C9—C101.529 (3)
O4—H4o0.8400C9—H9A0.9900
O5—C61.213 (3)C9—H9B0.9900
O6—C81.239 (3)C10—H10A0.9900
N1—C31.335 (3)C10—H10B0.9900
N1—C21.449 (3)C11—C121.383 (3)
N1—H1N0.8800C11—H110.9500
N2—C81.338 (3)C12—C131.391 (3)
N2—C71.453 (3)C12—H120.9500
N2—H2N0.8800C13—C141.397 (3)
N3—C151.338 (3)C13—C161.482 (3)
N3—C111.345 (3)C14—C151.374 (3)
N4—C181.332 (3)C14—H140.9500
N4—C191.349 (3)C15—H150.9500
C1—C21.517 (3)C16—C201.390 (3)
C2—C51.550 (3)C16—C171.396 (3)
C2—H21.0000C17—C181.377 (3)
C3—C41.511 (3)C17—H170.9500
C4—C51.533 (3)C18—H180.9500
C4—H4A0.9900C19—C201.376 (3)
C4—H4B0.9900C19—H190.9500
C5—H5A0.9900C20—H200.9500
C5—H5B0.9900
C1—O1—H1o109.5O6—C8—C9126.3 (2)
C6—O4—H4o109.5N2—C8—C9108.0 (2)
C3—N1—C2115.02 (18)C8—C9—C10104.03 (18)
C3—N1—H1N125.7C8—C9—H9A111.0
C2—N1—H1N119.2C10—C9—H9A111.0
C8—N2—C7114.5 (2)C8—C9—H9B111.0
C8—N2—H2N127.0C10—C9—H9B111.0
C7—N2—H2N118.5H9A—C9—H9B109.0
C15—N3—C11118.1 (2)C9—C10—C7103.70 (19)
C18—N4—C19117.74 (19)C9—C10—H10A111.0
O2—C1—O1124.3 (2)C7—C10—H10A111.0
O2—C1—C2123.0 (2)C9—C10—H10B111.0
O1—C1—C2112.71 (18)C7—C10—H10B111.0
N1—C2—C1110.12 (18)H10A—C10—H10B109.0
N1—C2—C5103.77 (17)N3—C11—C12122.7 (2)
C1—C2—C5113.37 (19)N3—C11—H11118.6
N1—C2—H2109.8C12—C11—H11118.6
C1—C2—H2109.8C11—C12—C13119.0 (2)
C5—C2—H2109.8C11—C12—H12120.5
O3—C3—N1124.9 (2)C13—C12—H12120.5
O3—C3—C4126.5 (2)C12—C13—C14118.0 (2)
N1—C3—C4108.55 (19)C12—C13—C16121.4 (2)
C3—C4—C5104.45 (18)C14—C13—C16120.6 (2)
C3—C4—H4A110.9C15—C14—C13119.3 (2)
C5—C4—H4A110.9C15—C14—H14120.4
C3—C4—H4B110.9C13—C14—H14120.4
C5—C4—H4B110.9N3—C15—C14122.9 (2)
H4A—C4—H4B108.9N3—C15—H15118.5
C4—C5—C2104.29 (17)C14—C15—H15118.5
C4—C5—H5A110.9C20—C16—C17117.6 (2)
C2—C5—H5A110.9C20—C16—C13121.71 (19)
C4—C5—H5B110.9C17—C16—C13120.7 (2)
C2—C5—H5B110.9C18—C17—C16119.2 (2)
H5A—C5—H5B108.9C18—C17—H17120.4
O5—C6—O4124.4 (2)C16—C17—H17120.4
O5—C6—C7123.4 (2)N4—C18—C17123.2 (2)
O4—C6—C7112.18 (19)N4—C18—H18118.4
N2—C7—C6111.09 (19)C17—C18—H18118.4
N2—C7—C10103.22 (18)N4—C19—C20122.7 (2)
C6—C7—C10114.16 (19)N4—C19—H19118.6
N2—C7—H7109.4C20—C19—H19118.6
C6—C7—H7109.4C19—C20—C16119.5 (2)
C10—C7—H7109.4C19—C20—H20120.3
O6—C8—N2125.7 (2)C16—C20—H20120.3
C3—N1—C2—C1−128.8 (2)C8—C9—C10—C7−24.8 (2)
C3—N1—C2—C5−7.2 (3)N2—C7—C10—C923.4 (2)
O2—C1—C2—N12.0 (3)C6—C7—C10—C9144.11 (19)
O1—C1—C2—N1−178.66 (19)C15—N3—C11—C12−0.1 (3)
O2—C1—C2—C5−113.8 (2)N3—C11—C12—C131.1 (3)
O1—C1—C2—C565.6 (3)C11—C12—C13—C14−1.8 (3)
C2—N1—C3—O3174.8 (2)C11—C12—C13—C16178.0 (2)
C2—N1—C3—C4−5.7 (3)C12—C13—C14—C151.6 (3)
O3—C3—C4—C5−164.3 (2)C16—C13—C14—C15−178.1 (2)
N1—C3—C4—C516.1 (2)C11—N3—C15—C140.0 (3)
C3—C4—C5—C2−19.6 (2)C13—C14—C15—N3−0.7 (4)
N1—C2—C5—C416.5 (2)C12—C13—C16—C20144.2 (2)
C1—C2—C5—C4135.96 (19)C14—C13—C16—C20−36.0 (3)
C8—N2—C7—C6−136.67 (19)C12—C13—C16—C17−36.3 (3)
C8—N2—C7—C10−13.9 (2)C14—C13—C16—C17143.4 (2)
O5—C6—C7—N2−7.0 (3)C20—C16—C17—C180.8 (3)
O4—C6—C7—N2173.39 (18)C13—C16—C17—C18−178.7 (2)
O5—C6—C7—C10−123.2 (2)C19—N4—C18—C170.2 (4)
O4—C6—C7—C1057.2 (3)C16—C17—C18—N4−0.7 (4)
C7—N2—C8—O6178.2 (2)C18—N4—C19—C200.2 (4)
C7—N2—C8—C9−2.1 (2)N4—C19—C20—C16−0.2 (4)
O6—C8—C9—C10−163.0 (2)C17—C16—C20—C19−0.3 (3)
N2—C8—C9—C1017.4 (2)C13—C16—C20—C19179.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1o···N30.841.752.588 (3)177
O4—H4o···N40.841.752.582 (3)175
N1—H1n···O3i0.882.032.911 (3)174
N2—H2n···O6ii0.882.032.903 (3)172
C15—H15···O4iii0.952.383.294 (3)162
C18—H18···O1iv0.952.413.293 (3)155

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y−1, −z+2; (iii) x, y+1, z; (iv) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5194).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.
  • Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  • Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352–1361.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Zukerman-Schpector, J. & Tiekink, E. R. T. (2008). Z. Kristallogr.223, 233–234.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography