PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1356.
Published online 2009 October 13. doi:  10.1107/S1600536809039592
PMCID: PMC2971152

Bis[2-(benzimidazol-2-ylsulfan­yl)acetato]bis­(2,2′-bipyridine)cadmium(II)

Abstract

In the structure of the title compound, [Cd(C9H7N2O2S)2(C10H8N2)2], the complex mol­ecules are located on a crystallographic twofold rotation axis and the CdII ion is octa­hedrally coordinated by two chelating 2,2′-bipyridine ligands and two O atoms from the carboxyl­ate groups of two 2-(benzimidazol-2-ylsulfan­yl)acetate ligands. The two carboxyl­ate ligands adopt a cis configuration with respect to each other. Within each of these ligands, the imidazole fragments are bent back in a loop towards the acetyl groups, forming intra­molecular N—H(...)O hydrogen bonds, which help to stablilize the mononuclear complex. Adjacent mol­ecules are further linked by weak C—H(...)O hydrogen bonds, resulting in a chain along the c axis.

Related literature

For related structures, see: Matthews et al. (1998 [triangle]); Cheng et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1356-scheme1.jpg

Experimental

Crystal data

  • [Cd(C9H7N2O2S)2(C10H8N2)2]
  • M r = 839.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1356-efi1.jpg
  • a = 26.733 (2) Å
  • b = 9.3043 (8) Å
  • c = 16.4220 (14) Å
  • β = 120.2540 (10)°
  • V = 3528.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.79 mm−1
  • T = 295 K
  • 0.20 × 0.18 × 0.12 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.858, T max = 0.911
  • 9308 measured reflections
  • 3460 independent reflections
  • 2946 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.069
  • S = 1.05
  • 3460 reflections
  • 244 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039592/zl2228sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039592/zl2228Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents at Southeast University for financial support.

supplementary crystallographic information

Comment

Recently, the photophysical properties of coordination compounds of d10 monovalent ions of the coinage metals have attracted considerable attention. Meanwhile, benzimidazole compounds and thioether carboxylates have been widely used to construct many interesting coordination compounds. However, such compounds formed by bifunctional ligands with both benzimidazole and thioether carboxylate groups have only been rarely reported (Cheng et al. 2009, Matthews et al. 1998). Herein, we present the synthesis and structural characterization of a new coordination compound of a d10 mononuclear complex Cd(Hbia)2(2,2'-bipy)2 (H2bia = 2-(1H-benzo[d]imidazol-2-ylthio)acetic acid; 2,2'-bipy = 2,2'-bipyridine) with the bifunctional ligand H2bia.

In the structure of the title compound the complex is located on a crystallographic two fold rotation axis with one CdII cation, one Hbia and one chelating 2,2'-bipy ligand in the asymmetric unit. The CdII ion displays a distorted octahedral geometry, being surrounded by two chelating 2,2'-bipy ligands with Cd—N coordinating distances of 2.342 (2) and 2.378 (2) Å and two oxygen atoms coming from the carboxylates of two Hbia ligands, respectively, with the distance involving O atoms and Cd being 2.275 (2) Å. The angles around Cd are in the range of 69.50 (8)–158.51 (8) °. Meanwhile, the two carboxylate ligands are related by a two fold rotation axis and adopt a cis- configuration with respect to each other. Within each of these ligands the imidazole fragments are bent back in a loop towards the acetyl groups to form intramolecular N—H···O hydrogen bonds which help to stablilize the mononuclear complex (table 1). The N···O distance between N2 of the imidazole and the coordinated O atom O2 is 2.708 (3) Å. Adjacent molecules are further linked together by C—H···O hydrogen bonding between the uncoordinated oxygen atoms and the carbon atoms of 2,2'-bipyridine (C11···O1ii 3.180 (4) Å. symmetry code: ii, -x, 1-y, 1-z), resulting in a one-dimensional hydrogen bonded chain.

Experimental

A mixture of H2bia (0.0208 g, 0.1 mmol), 2,2'-bipy (0.0156 g, 0.1 mmol), Cd(NO3)2.6H2O (0.0345 g, 0.1 mmol) and H2O (8 ml) was heated in a 15-ml Teflon-lined autoclave at 363 K for 5 days, followed by slow cooling (5 K h-1) to room temperature. The resulting mixture was washed with water, and colorless block crystals were collected and dried in air [yield 91% (76.3 mg) based on Cd(II)].

Refinement

The H atom bonded to the N atom was located in a difference map and was freely refined without use of restraints. All other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Structure of the title compound with 30% thermal ellipsoids. Symmetry code: i: -x, y, 1/2-z. Hydrogen atoms are omitted for clarity.
Fig. 2.
The one-dimensional hydrogen bonding chain of the title compound.

Crystal data

[Cd(C9H7N2O2S)2(C10H8N2)2]F(000) = 1704
Mr = 839.25Dx = 1.580 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 783 reflections
a = 26.733 (2) Åθ = 2.4–28.0°
b = 9.3043 (8) ŵ = 0.79 mm1
c = 16.4220 (14) ÅT = 295 K
β = 120.254 (1)°Block, colorless
V = 3528.3 (5) Å30.20 × 0.18 × 0.12 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3460 independent reflections
Radiation source: fine-focus sealed tube2946 reflections with I > 2σ(I)
graphiteRint = 0.028
[var phi] and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −32→30
Tmin = 0.858, Tmax = 0.911k = −11→11
9308 measured reflectionsl = −20→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.0305P)2 + 1.2632P] where P = (Fo2 + 2Fc2)/3
3460 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.27478 (3)0.25000.03543 (10)
S10.15271 (3)0.05110 (8)0.52528 (4)0.04872 (19)
C10.03416 (10)0.1120 (3)0.43699 (17)0.0373 (6)
C20.08216 (10)0.0184 (3)0.51125 (16)0.0415 (6)
H2A0.0721−0.08170.49450.050*
H2B0.08430.03460.57130.050*
C30.15201 (10)−0.0542 (3)0.43638 (16)0.0388 (6)
C40.17937 (11)−0.1829 (3)0.35876 (17)0.0413 (6)
C50.20952 (13)−0.2670 (3)0.3279 (2)0.0540 (7)
H5A0.2493−0.28090.36530.065*
C60.17850 (13)−0.3294 (3)0.2399 (2)0.0567 (7)
H6A0.1979−0.38600.21790.068*
C70.11932 (13)−0.3099 (3)0.1835 (2)0.0561 (8)
H7A0.1000−0.35230.12420.067*
C80.08838 (13)−0.2290 (3)0.2134 (2)0.0524 (7)
H8A0.0486−0.21630.17590.063*
C90.11938 (10)−0.1676 (3)0.30194 (16)0.0385 (6)
C100.03449 (11)0.5176 (3)0.4126 (2)0.0494 (7)
H10A−0.00490.51040.39150.059*
C110.06748 (12)0.6067 (3)0.4870 (2)0.0539 (7)
H11A0.05110.65760.51660.065*
C120.12519 (12)0.6190 (3)0.5169 (2)0.0526 (7)
H12A0.14850.67990.56670.063*
C130.14864 (11)0.5405 (3)0.47287 (18)0.0456 (6)
H13A0.18780.54790.49240.055*
C140.11277 (9)0.4506 (2)0.39904 (16)0.0336 (5)
C150.13512 (9)0.3589 (3)0.35035 (16)0.0339 (5)
C160.19346 (11)0.3488 (3)0.3800 (2)0.0542 (7)
H16A0.22030.40340.43070.065*
C170.21161 (12)0.2577 (3)0.3340 (2)0.0634 (9)
H17A0.25080.24960.35370.076*
C180.17124 (11)0.1788 (3)0.2589 (2)0.0525 (7)
H18A0.18240.11660.22660.063*
C190.11432 (11)0.1940 (3)0.23272 (18)0.0454 (7)
H19A0.08690.14100.18170.055*
N10.19912 (8)−0.1097 (2)0.44392 (15)0.0478 (5)
N20.10299 (9)−0.0851 (2)0.35415 (14)0.0410 (5)
N30.05612 (8)0.4404 (2)0.36884 (14)0.0390 (5)
N40.09607 (8)0.2814 (2)0.27686 (14)0.0360 (5)
O10.01181 (8)0.2029 (2)0.46217 (13)0.0559 (5)
O20.02068 (7)0.08785 (18)0.35135 (11)0.0422 (4)
H2C0.0731 (11)−0.046 (3)0.3391 (17)0.040 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02273 (14)0.04258 (17)0.03763 (15)0.0000.01272 (11)0.000
S10.0323 (3)0.0634 (5)0.0415 (4)0.0011 (3)0.0120 (3)−0.0134 (3)
C10.0281 (12)0.0453 (15)0.0395 (14)0.0012 (11)0.0178 (11)0.0034 (12)
C20.0437 (14)0.0473 (16)0.0351 (13)0.0069 (12)0.0211 (12)0.0061 (11)
C30.0293 (13)0.0463 (15)0.0354 (13)0.0004 (11)0.0123 (11)−0.0007 (11)
C40.0352 (13)0.0485 (16)0.0412 (14)0.0000 (11)0.0199 (12)0.0005 (12)
C50.0413 (16)0.067 (2)0.0592 (18)0.0054 (13)0.0293 (15)−0.0053 (15)
C60.0614 (19)0.0594 (19)0.0638 (19)0.0036 (15)0.0424 (17)−0.0084 (16)
C70.064 (2)0.0568 (19)0.0482 (17)−0.0032 (15)0.0289 (15)−0.0110 (14)
C80.0430 (16)0.0599 (18)0.0452 (16)0.0030 (13)0.0154 (13)−0.0044 (14)
C90.0357 (13)0.0404 (14)0.0376 (13)0.0031 (11)0.0170 (11)0.0038 (11)
C100.0418 (15)0.0446 (16)0.0701 (18)0.0026 (12)0.0344 (14)−0.0066 (14)
C110.0633 (19)0.0424 (16)0.0722 (19)0.0020 (14)0.0462 (17)−0.0104 (15)
C120.0540 (17)0.0482 (17)0.0573 (17)−0.0067 (13)0.0293 (15)−0.0161 (14)
C130.0363 (14)0.0483 (16)0.0512 (15)−0.0059 (12)0.0213 (12)−0.0138 (13)
C140.0288 (12)0.0340 (13)0.0379 (13)0.0002 (10)0.0167 (11)0.0002 (10)
C150.0275 (12)0.0379 (14)0.0362 (13)−0.0033 (10)0.0160 (10)−0.0032 (11)
C160.0296 (13)0.070 (2)0.0594 (17)−0.0091 (13)0.0196 (13)−0.0281 (15)
C170.0293 (14)0.088 (2)0.073 (2)−0.0054 (14)0.0259 (15)−0.0318 (18)
C180.0393 (15)0.0666 (19)0.0589 (17)−0.0006 (13)0.0302 (14)−0.0177 (15)
C190.0373 (14)0.0567 (18)0.0443 (15)−0.0087 (12)0.0220 (12)−0.0163 (13)
N10.0295 (11)0.0618 (15)0.0459 (13)0.0042 (10)0.0144 (10)−0.0054 (11)
N20.0281 (11)0.0496 (14)0.0393 (12)0.0059 (10)0.0126 (10)−0.0043 (10)
N30.0297 (11)0.0404 (12)0.0491 (12)0.0008 (9)0.0215 (10)−0.0055 (10)
N40.0267 (10)0.0443 (12)0.0366 (11)−0.0027 (9)0.0156 (9)−0.0065 (9)
O10.0470 (11)0.0704 (14)0.0491 (11)0.0212 (10)0.0234 (9)−0.0027 (10)
O20.0393 (9)0.0521 (11)0.0332 (9)0.0121 (8)0.0168 (8)0.0054 (8)

Geometric parameters (Å, °)

Cd1—O2i2.2746 (16)C8—H8A0.9300
Cd1—O22.2746 (16)C9—N21.376 (3)
Cd1—N32.342 (2)C10—N31.336 (3)
Cd1—N3i2.3417 (19)C10—C111.369 (4)
Cd1—N4i2.3775 (19)C10—H10A0.9300
Cd1—N42.3775 (19)C11—C121.368 (4)
S1—C31.750 (2)C11—H11A0.9300
S1—C21.807 (2)C12—C131.381 (3)
C1—O11.221 (3)C12—H12A0.9300
C1—O21.284 (3)C13—C141.385 (3)
C1—C21.521 (3)C13—H13A0.9300
C2—H2A0.9700C14—N31.338 (3)
C2—H2B0.9700C14—C151.485 (3)
C3—N11.308 (3)C15—N41.340 (3)
C3—N21.357 (3)C15—C161.383 (3)
C4—C51.389 (4)C16—C171.375 (4)
C4—N11.398 (3)C16—H16A0.9300
C4—C91.398 (3)C17—C181.373 (4)
C5—C61.381 (4)C17—H17A0.9300
C5—H5A0.9300C18—C191.364 (3)
C6—C71.385 (4)C18—H18A0.9300
C6—H6A0.9300C19—N41.335 (3)
C7—C81.378 (4)C19—H19A0.9300
C7—H7A0.9300N2—H2C0.80 (2)
C8—C91.383 (4)
O2i—Cd1—O280.25 (8)N2—C9—C4105.0 (2)
O2i—Cd1—N3158.50 (6)C8—C9—C4122.5 (2)
O2—Cd1—N394.35 (7)N3—C10—C11123.2 (2)
O2i—Cd1—N3i94.35 (7)N3—C10—H10A118.4
O2—Cd1—N3i158.50 (6)C11—C10—H10A118.4
N3—Cd1—N3i97.71 (10)C12—C11—C10118.3 (2)
O2i—Cd1—N4i92.44 (6)C12—C11—H11A120.9
O2—Cd1—N4i89.84 (6)C10—C11—H11A120.9
N3—Cd1—N4i108.43 (7)C11—C12—C13119.7 (3)
N3i—Cd1—N4i69.49 (6)C11—C12—H12A120.1
O2i—Cd1—N489.84 (6)C13—C12—H12A120.1
O2—Cd1—N492.44 (6)C12—C13—C14118.8 (2)
N3—Cd1—N469.49 (6)C12—C13—H13A120.6
N3i—Cd1—N4108.43 (7)C14—C13—H13A120.6
N4i—Cd1—N4177.01 (10)N3—C14—C13121.5 (2)
C3—S1—C2103.15 (12)N3—C14—C15116.5 (2)
O1—C1—O2125.2 (2)C13—C14—C15122.0 (2)
O1—C1—C2118.9 (2)N4—C15—C16120.6 (2)
O2—C1—C2115.8 (2)N4—C15—C14116.84 (19)
C1—C2—S1114.25 (17)C16—C15—C14122.5 (2)
C1—C2—H2A108.7C17—C16—C15119.7 (2)
S1—C2—H2A108.7C17—C16—H16A120.1
C1—C2—H2B108.7C15—C16—H16A120.1
S1—C2—H2B108.7C18—C17—C16119.2 (3)
H2A—C2—H2B107.6C18—C17—H17A120.4
N1—C3—N2114.3 (2)C16—C17—H17A120.4
N1—C3—S1122.47 (18)C19—C18—C17118.3 (2)
N2—C3—S1123.23 (18)C19—C18—H18A120.8
C5—C4—N1130.0 (2)C17—C18—H18A120.8
C5—C4—C9119.7 (2)N4—C19—C18123.2 (2)
N1—C4—C9110.2 (2)N4—C19—H19A118.4
C6—C5—C4117.8 (3)C18—C19—H19A118.4
C6—C5—H5A121.1C3—N1—C4103.73 (19)
C4—C5—H5A121.1C3—N2—C9106.7 (2)
C5—C6—C7121.7 (3)C3—N2—H2C121.9 (18)
C5—C6—H6A119.1C9—N2—H2C130.3 (18)
C7—C6—H6A119.1C10—N3—C14118.6 (2)
C8—C7—C6121.5 (3)C10—N3—Cd1122.20 (16)
C8—C7—H7A119.3C14—N3—Cd1119.05 (15)
C6—C7—H7A119.3C19—N4—C15119.0 (2)
C7—C8—C9116.8 (3)C19—N4—Cd1122.67 (16)
C7—C8—H8A121.6C15—N4—Cd1117.36 (14)
C9—C8—H8A121.6C1—O2—Cd1119.90 (16)
N2—C9—C8132.4 (2)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2C···O20.80 (2)1.96 (2)2.708 (3)156 (2)
C11—H11A···O1ii0.932.293.179 (3)161

Symmetry codes: (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2228).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, L., Sun, Y.-Y., Zhang, Y.-W. & Wang, J.-Q. (2009). Acta Cryst. E65, m34. [PMC free article] [PubMed]
  • Matthews, C. J., Heath, S. L., Elsegood, M. R. J., Clegg, W., Leese, T. A. & Lockhart, J. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1973–1977.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography