PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2962.
Published online 2009 October 31. doi:  10.1107/S1600536809045073
PMCID: PMC2971146

(5-Ethenyl-1-aza­bicyclo­[2.2.2]octan-2-yl)(6-meth­oxy-3-quinol­yl)methanol methanol solvate

Abstract

In the title methanol solvate, C20H24N2O2·CH4O, an L-shaped conformation is found as the two substituents at the central hydr­oxy group are almost orthogonal to each other [the C—C—C angle at the central sp 3-C atom is 110.12 (13)°]. The most notable feature of the crystal packing is the formation of supra­molecular chains along the b direction mediated by O—H(...)N hydrogen bonds occurring between the hydr­oxy and quinoline N atoms; the methanol mol­ecules are linked to these chains via O—H(...)Namine hydrogen bonds. C—H(...)O inter­actions also occur.

Related literature

For background to pre-catalyst mol­ecules for the Michael addition of acetone to trans-β-nitro­styrene, see: Mandal & Zhao (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2962-scheme1.jpg

Experimental

Crystal data

  • C20H24N2O2·CH4O
  • M r = 356.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2962-efi1.jpg
  • a = 9.5374 (13) Å
  • b = 12.9842 (17) Å
  • c = 15.871 (2) Å
  • V = 1965.4 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 98 K
  • 0.12 × 0.10 × 0.04 mm

Data collection

  • Rigaku AFC12K/SATURN724 diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.788, T max = 1.000
  • 14410 measured reflections
  • 2561 independent reflections
  • 2501 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.108
  • S = 1.08
  • 2561 reflections
  • 243 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809045073/hb5191sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809045073/hb5191Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

CGZ thanks the National Science Foundation (grant No. CHE-0909954) for financial support of this project.

supplementary crystallographic information

Comment

Molecules related to and including the title compound, (I), have been evaluated as pre-catalysts for the Michael addition of acetone to trans-β-nitrostyrene, see: Mandal & Zhao (2008).

The molecule of (I), Fig. 1, adopts an `L'-shaped conformation whereby the substituted quinoline and dabco residues are linked at the central sp3-C10 atom carrying the hydroxy group, the C1–C10–C11 angle is 110.12 (13)°. Viewed down the N1···C3 axis, the dabco molecule adopts an essentially eclipsed conformation. Both the hydroxy and vinyl groups are orientated towards the same side of the molecule.

In the crystal structure, molecules are connected into a supramolecular chain along the b axis via O—H···N2 hydrogen bonds formed between the O1-hydroxy group and the N2 atom of the quinoline residue, Table 1 and Fig. 2. The lattice methanol molecules associate with this chain via O—H···N1 hydrogen bonds. Chains are consolidated in the crystal packing by C–H···O interactions, Table 1.

Experimental

Quinidine (TCI America Chemicals) and `L'-proline (Sigma Aldrich) were obtained commercially and used as received. A 1:1 molar ratio of quinidine (100 mg) and `L'-proline (35 mg) were taken in methanol (8 ml) and upon upon vapour diffusion of hexane, colourless crystals formed within 7 days.

Refinement

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl-C). In the absence of significant anomalous scattering effects, 1951 Friedel pairs were averaged in the final refinement.

Figures

Fig. 1.
Molecular structure of the asymmetric unit in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H···N hydrogen bond is shown as a dashed line.
Fig. 2.
Supramolecular chain in (I) mediated by O–H···N hydrogen bonds (orange dashed lines). Methanol molecules are associated with this chain via O–H···N hydrogen bonds (black dashed lines).

Crystal data

C20H24N2O2·CH4OF(000) = 768
Mr = 356.45Dx = 1.205 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7299 reflections
a = 9.5374 (13) Åθ = 2.0–40.2°
b = 12.9842 (17) ŵ = 0.08 mm1
c = 15.871 (2) ÅT = 98 K
V = 1965.4 (4) Å3Platelet, colourless
Z = 40.12 × 0.10 × 0.04 mm

Data collection

Rigaku AFC12K/SATURN724 diffractometer2561 independent reflections
Radiation source: fine-focus sealed tube2501 reflections with I > 2σ(I)
graphiteRint = 0.043
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −12→12
Tmin = 0.788, Tmax = 1.000k = −16→16
14410 measured reflectionsl = −18→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.067P)2 + 0.3164P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2561 reflectionsΔρmax = 0.35 e Å3
243 parametersΔρmin = −0.27 e Å3
2 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.09211 (13)0.48893 (9)0.86000 (8)0.0208 (3)
H1O−0.08590.55280.85260.031*
O20.56486 (13)0.36533 (10)0.77309 (8)0.0235 (3)
O30.32503 (17)0.60866 (12)0.92437 (9)0.0349 (4)
H3O0.26070.57120.94350.052*
N10.12984 (17)0.48168 (12)1.00313 (9)0.0245 (3)
N20.05966 (17)0.19494 (12)0.67553 (10)0.0228 (3)
C10.08927 (18)0.39987 (13)0.94193 (10)0.0191 (3)
H10.17540.35800.93120.023*
C2−0.0200 (2)0.32607 (14)0.98034 (12)0.0250 (4)
H2A−0.11350.33930.95560.030*
H2B0.00610.25370.96840.030*
C3−0.0236 (2)0.34482 (17)1.07595 (13)0.0299 (4)
H3−0.08270.29131.10410.036*
C40.1270 (2)0.33999 (17)1.10976 (13)0.0324 (5)
H4A0.17110.27381.09360.039*
H4B0.12660.34491.17200.039*
C50.2101 (2)0.43074 (17)1.07174 (13)0.0304 (4)
H5A0.23100.48161.11650.036*
H5B0.30040.40511.04910.036*
C60.0053 (2)0.53057 (16)1.04185 (12)0.0327 (5)
H6A−0.05390.56070.99700.039*
H6B0.03620.58721.07920.039*
C7−0.0833 (2)0.45269 (18)1.09371 (12)0.0329 (5)
H7−0.06940.46811.15490.039*
C8−0.2379 (3)0.4605 (2)1.07452 (16)0.0498 (7)
H8−0.26500.46261.01700.060*
C9−0.3375 (3)0.4646 (2)1.13121 (18)0.0534 (7)
H9A−0.31450.46261.18940.064*
H9B−0.43270.46951.11410.064*
C100.04468 (16)0.44563 (13)0.85620 (11)0.0175 (3)
H100.11260.50100.84020.021*
C110.04985 (18)0.36143 (13)0.78993 (10)0.0182 (3)
C12−0.07008 (19)0.31535 (14)0.76062 (12)0.0227 (4)
H12−0.15930.33920.77870.027*
C13−0.06039 (19)0.23226 (15)0.70350 (12)0.0249 (4)
H13−0.14490.20150.68420.030*
C140.18062 (18)0.24173 (13)0.70160 (10)0.0196 (3)
C150.18147 (17)0.32619 (13)0.75884 (10)0.0172 (3)
C160.31191 (18)0.37064 (13)0.78240 (10)0.0180 (3)
H160.31370.42830.81930.022*
C170.43522 (18)0.33065 (13)0.75211 (11)0.0191 (3)
C180.43402 (19)0.24588 (14)0.69502 (11)0.0213 (3)
H180.51990.21870.67430.026*
C190.31040 (19)0.20397 (14)0.67016 (11)0.0216 (3)
H190.31060.14850.63110.026*
C200.57014 (19)0.44156 (15)0.83814 (14)0.0288 (4)
H20A0.52190.50400.81910.043*
H20B0.66820.45790.85100.043*
H20C0.52400.41500.88880.043*
C210.3789 (4)0.6699 (3)0.98995 (18)0.0793 (13)
H21A0.31870.73030.99790.119*
H21B0.47400.69250.97550.119*
H21C0.38160.62961.04210.119*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0171 (6)0.0161 (5)0.0292 (6)0.0017 (5)0.0012 (5)−0.0008 (5)
O20.0157 (5)0.0233 (6)0.0314 (6)−0.0006 (5)0.0013 (5)−0.0028 (5)
O30.0421 (9)0.0361 (8)0.0265 (6)−0.0121 (7)0.0075 (6)−0.0059 (6)
N10.0303 (8)0.0229 (7)0.0203 (6)−0.0048 (6)−0.0025 (6)−0.0006 (6)
N20.0230 (7)0.0193 (7)0.0262 (7)−0.0012 (6)−0.0012 (6)−0.0032 (6)
C10.0206 (8)0.0166 (7)0.0202 (7)−0.0011 (6)0.0009 (6)0.0007 (6)
C20.0281 (9)0.0209 (8)0.0259 (8)−0.0048 (7)0.0028 (7)0.0031 (7)
C30.0292 (9)0.0362 (11)0.0242 (8)−0.0031 (8)0.0029 (8)0.0098 (8)
C40.0322 (10)0.0360 (11)0.0291 (9)0.0001 (9)−0.0013 (8)0.0110 (8)
C50.0320 (10)0.0346 (10)0.0244 (8)−0.0049 (8)−0.0060 (8)0.0027 (8)
C60.0487 (12)0.0262 (10)0.0234 (8)0.0091 (9)−0.0014 (9)−0.0047 (8)
C70.0318 (10)0.0468 (12)0.0201 (8)0.0083 (10)0.0039 (8)−0.0020 (8)
C80.0360 (12)0.080 (2)0.0335 (11)0.0157 (13)−0.0006 (10)−0.0086 (13)
C90.0388 (12)0.0715 (19)0.0500 (14)0.0109 (13)0.0095 (11)0.0000 (14)
C100.0151 (7)0.0161 (7)0.0212 (7)0.0002 (6)0.0008 (6)−0.0003 (6)
C110.0189 (7)0.0155 (7)0.0201 (7)−0.0002 (6)0.0010 (6)0.0012 (6)
C120.0178 (7)0.0216 (8)0.0288 (8)0.0019 (7)0.0005 (7)−0.0039 (7)
C130.0208 (8)0.0230 (8)0.0311 (9)−0.0020 (7)−0.0030 (7)−0.0047 (7)
C140.0218 (8)0.0175 (8)0.0195 (7)0.0009 (7)0.0005 (6)−0.0014 (6)
C150.0181 (7)0.0151 (7)0.0184 (7)0.0002 (6)0.0003 (6)0.0009 (6)
C160.0190 (7)0.0163 (7)0.0186 (7)−0.0009 (6)0.0003 (6)0.0007 (6)
C170.0186 (7)0.0180 (8)0.0207 (7)−0.0003 (6)0.0004 (6)0.0033 (6)
C180.0210 (7)0.0211 (8)0.0217 (8)0.0039 (7)0.0046 (7)0.0008 (7)
C190.0252 (8)0.0183 (8)0.0212 (7)0.0025 (7)0.0019 (7)−0.0023 (6)
C200.0171 (7)0.0270 (9)0.0422 (10)−0.0017 (7)−0.0009 (8)−0.0092 (8)
C210.106 (3)0.092 (3)0.0397 (14)−0.069 (2)0.0241 (16)−0.0203 (15)

Geometric parameters (Å, °)

O1—C101.4218 (19)C7—C81.509 (3)
O1—H1O0.8400C7—H71.0000
O2—C171.357 (2)C8—C91.309 (4)
O2—C201.431 (2)C8—H80.9500
O3—C211.407 (3)C9—H9A0.9500
O3—H3O0.8401C9—H9B0.9500
N1—C61.480 (3)C10—C111.518 (2)
N1—C51.487 (2)C10—H101.0000
N1—C11.490 (2)C11—C121.372 (2)
N2—C131.320 (2)C11—C151.424 (2)
N2—C141.368 (2)C12—C131.412 (2)
C1—C21.541 (2)C12—H120.9500
C1—C101.544 (2)C13—H130.9500
C1—H11.0000C14—C191.422 (2)
C2—C31.537 (3)C14—C151.424 (2)
C2—H2A0.9900C15—C161.421 (2)
C2—H2B0.9900C16—C171.373 (2)
C3—C41.534 (3)C16—H160.9500
C3—C71.538 (3)C17—C181.426 (2)
C3—H31.0000C18—C191.357 (3)
C4—C51.543 (3)C18—H180.9500
C4—H4A0.9900C19—H190.9500
C4—H4B0.9900C20—H20A0.9800
C5—H5A0.9900C20—H20B0.9800
C5—H5B0.9900C20—H20C0.9800
C6—C71.553 (3)C21—H21A0.9800
C6—H6A0.9900C21—H21B0.9800
C6—H6B0.9900C21—H21C0.9800
C10—O1—H1O108.6C9—C8—H8117.5
C17—O2—C20116.01 (13)C7—C8—H8117.5
C21—O3—H3O109.2C8—C9—H9A120.0
C6—N1—C5107.46 (15)C8—C9—H9B120.0
C6—N1—C1111.58 (15)H9A—C9—H9B120.0
C5—N1—C1107.09 (15)O1—C10—C11110.12 (13)
C13—N2—C14117.82 (15)O1—C10—C1111.56 (13)
N1—C1—C2111.16 (14)C11—C10—C1108.93 (14)
N1—C1—C10111.80 (14)O1—C10—H10108.7
C2—C1—C10113.66 (14)C11—C10—H10108.7
N1—C1—H1106.6C1—C10—H10108.7
C2—C1—H1106.6C12—C11—C15118.50 (15)
C10—C1—H1106.6C12—C11—C10121.46 (15)
C3—C2—C1107.88 (15)C15—C11—C10120.01 (14)
C3—C2—H2A110.1C11—C12—C13119.75 (16)
C1—C2—H2A110.1C11—C12—H12120.1
C3—C2—H2B110.1C13—C12—H12120.1
C1—C2—H2B110.1N2—C13—C12123.58 (17)
H2A—C2—H2B108.4N2—C13—H13118.2
C4—C3—C2108.53 (17)C12—C13—H13118.2
C4—C3—C7108.63 (18)N2—C14—C19118.35 (15)
C2—C3—C7109.48 (16)N2—C14—C15122.68 (15)
C4—C3—H3110.1C19—C14—C15118.98 (15)
C2—C3—H3110.1C16—C15—C14119.04 (15)
C7—C3—H3110.1C16—C15—C11123.35 (15)
C3—C4—C5108.25 (16)C14—C15—C11117.60 (15)
C3—C4—H4A110.0C17—C16—C15120.28 (15)
C5—C4—H4A110.0C17—C16—H16119.9
C3—C4—H4B110.0C15—C16—H16119.9
C5—C4—H4B110.0O2—C17—C16124.69 (16)
H4A—C4—H4B108.4O2—C17—C18114.79 (15)
N1—C5—C4111.18 (16)C16—C17—C18120.52 (16)
N1—C5—H5A109.4C19—C18—C17120.08 (16)
C4—C5—H5A109.4C19—C18—H18120.0
N1—C5—H5B109.4C17—C18—H18120.0
C4—C5—H5B109.4C18—C19—C14121.07 (16)
H5A—C5—H5B108.0C18—C19—H19119.5
N1—C6—C7112.16 (16)C14—C19—H19119.5
N1—C6—H6A109.2O2—C20—H20A109.5
C7—C6—H6A109.2O2—C20—H20B109.5
N1—C6—H6B109.2H20A—C20—H20B109.5
C7—C6—H6B109.2O2—C20—H20C109.5
H6A—C6—H6B107.9H20A—C20—H20C109.5
C8—C7—C3112.7 (2)H20B—C20—H20C109.5
C8—C7—C6112.37 (19)O3—C21—H21A109.5
C3—C7—C6107.13 (15)O3—C21—H21B109.5
C8—C7—H7108.2H21A—C21—H21B109.5
C3—C7—H7108.2O3—C21—H21C109.5
C6—C7—H7108.2H21A—C21—H21C109.5
C9—C8—C7124.9 (2)H21B—C21—H21C109.5
C6—N1—C1—C2−48.65 (19)C1—C10—C11—C12103.71 (18)
C5—N1—C1—C268.68 (19)O1—C10—C11—C15163.18 (14)
C6—N1—C1—C1079.54 (17)C1—C10—C11—C15−74.18 (19)
C5—N1—C1—C10−163.12 (14)C15—C11—C12—C132.5 (3)
N1—C1—C2—C3−14.0 (2)C10—C11—C12—C13−175.43 (16)
C10—C1—C2—C3−141.20 (16)C14—N2—C13—C12−2.0 (3)
C1—C2—C3—C4−51.1 (2)C11—C12—C13—N2−0.1 (3)
C1—C2—C3—C767.3 (2)C13—N2—C14—C19−178.37 (17)
C2—C3—C4—C565.3 (2)C13—N2—C14—C151.8 (3)
C7—C3—C4—C5−53.6 (2)N2—C14—C15—C16−179.73 (16)
C6—N1—C5—C466.4 (2)C19—C14—C15—C160.4 (2)
C1—N1—C5—C4−53.6 (2)N2—C14—C15—C110.6 (2)
C3—C4—C5—N1−10.8 (2)C19—C14—C15—C11−179.29 (15)
C5—N1—C6—C7−54.7 (2)C12—C11—C15—C16177.65 (17)
C1—N1—C6—C762.44 (19)C10—C11—C15—C16−4.4 (2)
C4—C3—C7—C8−171.49 (17)C12—C11—C15—C14−2.7 (2)
C2—C3—C7—C870.1 (2)C10—C11—C15—C14175.28 (15)
C4—C3—C7—C664.42 (19)C14—C15—C16—C17−1.8 (2)
C2—C3—C7—C6−53.9 (2)C11—C15—C16—C17177.88 (16)
N1—C6—C7—C8−133.14 (19)C20—O2—C17—C166.9 (2)
N1—C6—C7—C3−8.8 (2)C20—O2—C17—C18−172.46 (15)
C3—C7—C8—C9106.1 (3)C15—C16—C17—O2−177.66 (16)
C6—C7—C8—C9−132.7 (3)C15—C16—C17—C181.6 (2)
N1—C1—C10—O1−76.08 (17)O2—C17—C18—C19179.34 (16)
C2—C1—C10—O150.77 (19)C16—C17—C18—C190.0 (3)
N1—C1—C10—C11162.15 (14)C17—C18—C19—C14−1.4 (3)
C2—C1—C10—C11−71.00 (17)N2—C14—C19—C18−178.68 (17)
O1—C10—C11—C12−18.9 (2)C15—C14—C19—C181.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.841.952.783 (2)171
O1—H1o···N2i0.841.922.751 (2)173
C20—H20b···O1ii0.982.333.298 (2)171
C18—H18···O3iii0.952.583.471 (2)155

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5191).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mandal, T. & Zhao, C.-G. (2008). Angew. Chem. Int. Ed.47, 7714–7717. [PubMed]
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography