PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2707–o2708.
Published online 2009 October 10. doi:  10.1107/S1600536809040239
PMCID: PMC2971145

6-Chloro-2-methyl-4-phenyl-3-[1-phenyl-5-(2-thien­yl)-4,5-dihydro-1H-pyrazol-3-yl]quinoline

Abstract

In the title mol­ecule, C29H22ClN3S, the quinoline ring system, thio­phene ring and phenyl ring substituents are inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)°, respectively, to the 4,5-dihydro­pyrazole ring. In the 4-phenyl­quinoline ring system, the phenyl ring makes a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system. In the crystal structure, mol­ecules are linked via weak inter­molecular C—H(...)N hydrogen bonds, forming an extended one-dimensional chain along the b axis and are further consolidated by C—H(...)π and π–π stacking inter­actions [centroid–centroid distances = 3.7022 (10) Å].

Related literature

For general background to quinolines and their derivatives, see: Morimoto et al. (1991 [triangle]); Michael (1997 [triangle]); Markees et al. (1970 [triangle]); Campbell et al. (1988 [triangle]). For applications of quinolines, see: Maguire et al. (1994 [triangle]); Kalluraya & Sreenivasa (1998 [triangle]); Roma et al. (2000 [triangle]); Chen et al. (2001 [triangle]); Skraup (1880 [triangle]). For the synthesis of new quinoline derivatives, see: Katritzky & Arend (1998 [triangle]); Jiang & Si (2002 [triangle]). For related structures, see: Fun et al. (2009a [triangle],b [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2707-scheme1.jpg

Experimental

Crystal data

  • C29H22ClN3S
  • M r = 480.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2707-efi1.jpg
  • a = 14.0395 (4) Å
  • b = 9.4199 (3) Å
  • c = 19.3020 (6) Å
  • β = 114.696 (2)°
  • V = 2319.22 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100 K
  • 0.54 × 0.51 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.863, T max = 0.943
  • 32081 measured reflections
  • 6723 independent reflections
  • 5814 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.139
  • S = 1.07
  • 6723 reflections
  • 308 parameters
  • H-atom parameters constrained
  • Δρmax = 1.19 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040239/lh2922sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040239/lh2922Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF thanks Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CKQ thanks USM for a Research Fellowship. VV is grateful to DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). A large variety of quinolines have interesting physiological activities and found attractive applications as pharmaceuticals, agrochemicals and as synthetic building blocks (Maguire et al., 1994; Kalluraya & Sreenivasa, 1998; Roma et al., 2000; Chen et al., 2001; Skraup, 1880). Many synthetic methods such as Skraup, Doebner-Von Miller, Friedländer and Combes reactions have been developed for the preparation of quinolines. Due to their great importance, the synthesis of new derivatives of quinoline remains an active research area (Katritzky & Arend, 1998; Jiang & Si, 2002).

The title molecule (Fig. 1) consists of a 4-phenylquinoline ring system (N1/C1–C15), a thiophene ring (S1/C19–C22) and a phenyl ring (C23–C28) attached to a 4,5-dihydropyrazole ring (N2/N3/C16–C18). The 4,5-dihydropyrazole ring is inclined at angles of 71.70 (7), 59.26 (9) and 81.61 (9)° with respect to the quinoline group, thiophene and phenyl rings substituted to 4,5-dihydropyrazole ring, respectively. In the 4-phenylquinoline ring system, the substituent phenyl ring (C10–C15) forms a dihedral angle of 62.49 (7)° with mean plane of quinoline ring system (N1/C1–C9). Bond lengths and angles are within normal ranges, and comparable to closely related structures (Fun et al., 2009a,b).

In the crystal structure (Fig. 2), the molecules are linked via weak intermolecular C—H···N hydrogen bonds to form an extended one-dimensional chain along the b-axis and are further consolidated by C–H···π (Table 1) and π–π stacking interactions between S1/C19–C22 (centroid Cg1) and N2/N3/C16–C18 (centroid Cg2) rings, with a Cg1···Cg2 distance of 3.7022 (10) Å.

Experimental

A mixture of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(thiophen-2-yl) prop-2-en-1-one (0.4 g 0.001 M) and phenyl hydrazine (0.756 g 0.007 M) in distilled ethanol was refluxed for about 8 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with dilute HCl. The resultant solid was filtered, dried and purified by column chromatography using 1:1 mixture of chloroform and petroleum ether. M.p. 463-465K.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Figures

Fig. 1.
The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of title compound, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C29H22ClN3SF(000) = 1000
Mr = 480.01Dx = 1.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9914 reflections
a = 14.0395 (4) Åθ = 2.7–35.6°
b = 9.4199 (3) ŵ = 0.28 mm1
c = 19.3020 (6) ÅT = 100 K
β = 114.696 (2)°Block, yellow
V = 2319.22 (12) Å30.54 × 0.51 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6723 independent reflections
Radiation source: fine-focus sealed tube5814 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −19→19
Tmin = 0.863, Tmax = 0.943k = −13→13
32081 measured reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0722P)2 + 1.7861P] where P = (Fo2 + 2Fc2)/3
6723 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = −0.39 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.52535 (3)0.15347 (5)0.55993 (3)0.02753 (12)
S10.13358 (3)0.98946 (4)0.82776 (2)0.01644 (10)
N10.46753 (10)0.73714 (15)0.64499 (8)0.0179 (3)
N20.16075 (10)0.79726 (15)0.65110 (8)0.0152 (3)
N30.09408 (10)0.81949 (15)0.68774 (7)0.0142 (3)
C10.47887 (12)0.59890 (18)0.62770 (9)0.0161 (3)
C20.56285 (12)0.5667 (2)0.60768 (10)0.0199 (3)
H2A0.60820.63850.60750.024*
C30.57797 (12)0.4312 (2)0.58854 (10)0.0211 (3)
H3A0.63380.41050.57620.025*
C40.50776 (12)0.32362 (19)0.58782 (10)0.0190 (3)
C50.42605 (12)0.34935 (18)0.60750 (9)0.0167 (3)
H5A0.38120.27620.60690.020*
C60.41072 (11)0.48866 (17)0.62882 (9)0.0143 (3)
C70.32784 (11)0.52504 (17)0.65019 (8)0.0131 (3)
C80.31640 (11)0.66558 (17)0.66620 (9)0.0142 (3)
C90.38941 (12)0.76979 (17)0.66316 (9)0.0163 (3)
C100.25384 (11)0.41394 (16)0.65240 (9)0.0130 (3)
C110.14714 (12)0.42336 (17)0.60459 (9)0.0155 (3)
H11A0.12230.49860.57050.019*
C120.07765 (12)0.32076 (18)0.60763 (10)0.0189 (3)
H12A0.00670.32760.57550.023*
C130.11390 (13)0.20823 (18)0.65841 (10)0.0200 (3)
H13A0.06740.13960.66030.024*
C140.22015 (13)0.19852 (18)0.70645 (10)0.0198 (3)
H14A0.24460.12340.74070.024*
C150.28996 (12)0.30060 (18)0.70350 (9)0.0175 (3)
H15A0.36090.29340.73570.021*
C160.23190 (12)0.70685 (17)0.68943 (9)0.0148 (3)
C170.22254 (14)0.65035 (19)0.75936 (10)0.0215 (3)
H17A0.28330.67530.80550.026*
H17B0.21390.54800.75690.026*
C180.12318 (12)0.72575 (17)0.75567 (9)0.0146 (3)
H18A0.06760.65580.74670.018*
C190.14343 (11)0.80776 (16)0.82741 (9)0.0131 (3)
C200.17644 (12)0.75300 (18)0.89937 (9)0.0165 (3)
H20A0.18620.65660.91050.020*
C210.19417 (13)0.86128 (18)0.95550 (9)0.0176 (3)
H21A0.21740.84291.00730.021*
C220.17337 (13)0.99422 (18)0.92477 (9)0.0172 (3)
H22A0.17991.07680.95280.021*
C23−0.01218 (11)0.84260 (16)0.63906 (9)0.0136 (3)
C24−0.08776 (12)0.83902 (17)0.66885 (9)0.0156 (3)
H24A−0.06760.82220.72050.019*
C25−0.19302 (12)0.86073 (17)0.62083 (10)0.0186 (3)
H25A−0.24290.85630.64070.022*
C26−0.22460 (12)0.88873 (19)0.54400 (10)0.0203 (3)
H26A−0.29500.90320.51240.024*
C27−0.14923 (13)0.89488 (19)0.51478 (10)0.0205 (3)
H27A−0.16970.91440.46330.025*
C28−0.04358 (12)0.87221 (18)0.56158 (9)0.0174 (3)
H28A0.00600.87680.54140.021*
C290.38103 (13)0.92253 (18)0.68234 (11)0.0221 (3)
H29A0.44140.97370.68470.033*
H29B0.37740.92800.73080.033*
H29C0.31890.96350.64380.033*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01621 (19)0.0284 (2)0.0367 (3)0.00178 (15)0.00981 (17)−0.01431 (19)
S10.02017 (19)0.01186 (18)0.01700 (19)0.00090 (13)0.00746 (15)0.00049 (14)
N10.0130 (6)0.0176 (7)0.0196 (7)−0.0012 (5)0.0033 (5)0.0006 (5)
N20.0131 (6)0.0157 (6)0.0170 (6)−0.0001 (5)0.0065 (5)0.0000 (5)
N30.0127 (6)0.0169 (6)0.0120 (6)0.0025 (5)0.0042 (5)0.0021 (5)
C10.0114 (6)0.0185 (7)0.0154 (7)−0.0003 (5)0.0026 (5)0.0007 (6)
C20.0119 (6)0.0259 (8)0.0208 (8)−0.0020 (6)0.0058 (6)0.0007 (7)
C30.0112 (6)0.0297 (9)0.0219 (8)0.0007 (6)0.0066 (6)−0.0023 (7)
C40.0125 (7)0.0225 (8)0.0202 (8)0.0029 (6)0.0049 (6)−0.0045 (6)
C50.0122 (6)0.0178 (7)0.0190 (7)0.0003 (5)0.0054 (6)−0.0032 (6)
C60.0101 (6)0.0163 (7)0.0150 (7)0.0003 (5)0.0035 (5)−0.0002 (5)
C70.0099 (6)0.0149 (7)0.0121 (6)0.0004 (5)0.0022 (5)0.0002 (5)
C80.0117 (6)0.0149 (7)0.0131 (7)0.0019 (5)0.0023 (5)0.0003 (5)
C90.0143 (6)0.0153 (7)0.0150 (7)−0.0001 (5)0.0018 (5)0.0003 (6)
C100.0121 (6)0.0133 (7)0.0143 (6)0.0005 (5)0.0062 (5)−0.0013 (5)
C110.0126 (6)0.0168 (7)0.0169 (7)0.0012 (5)0.0061 (5)0.0016 (6)
C120.0137 (7)0.0212 (8)0.0222 (8)−0.0030 (6)0.0079 (6)−0.0025 (6)
C130.0216 (7)0.0173 (8)0.0261 (8)−0.0039 (6)0.0147 (7)−0.0030 (7)
C140.0238 (8)0.0153 (7)0.0240 (8)0.0038 (6)0.0136 (7)0.0046 (6)
C150.0153 (7)0.0169 (7)0.0202 (8)0.0044 (5)0.0074 (6)0.0027 (6)
C160.0148 (6)0.0132 (7)0.0140 (7)0.0007 (5)0.0036 (5)−0.0018 (5)
C170.0269 (8)0.0224 (8)0.0159 (7)0.0127 (7)0.0097 (6)0.0028 (6)
C180.0165 (7)0.0123 (7)0.0143 (7)0.0011 (5)0.0057 (5)0.0006 (5)
C190.0119 (6)0.0123 (6)0.0149 (7)0.0008 (5)0.0052 (5)−0.0010 (5)
C200.0168 (7)0.0151 (7)0.0185 (7)0.0014 (5)0.0083 (6)0.0016 (6)
C210.0176 (7)0.0216 (8)0.0133 (7)0.0016 (6)0.0061 (6)0.0000 (6)
C220.0186 (7)0.0171 (7)0.0161 (7)−0.0010 (6)0.0075 (6)−0.0038 (6)
C230.0123 (6)0.0113 (6)0.0157 (7)−0.0001 (5)0.0043 (5)−0.0018 (5)
C240.0159 (7)0.0138 (7)0.0174 (7)−0.0010 (5)0.0072 (6)−0.0013 (6)
C250.0153 (7)0.0144 (7)0.0275 (8)−0.0020 (5)0.0102 (6)−0.0054 (6)
C260.0131 (7)0.0176 (8)0.0247 (8)0.0008 (5)0.0026 (6)−0.0057 (6)
C270.0179 (7)0.0218 (8)0.0166 (7)0.0044 (6)0.0022 (6)−0.0007 (6)
C280.0151 (7)0.0203 (8)0.0155 (7)0.0027 (6)0.0051 (6)0.0004 (6)
C290.0189 (7)0.0149 (7)0.0289 (9)−0.0015 (6)0.0065 (6)−0.0021 (7)

Geometric parameters (Å, °)

Cl1—C41.7410 (18)C13—H13A0.9300
S1—C221.7163 (17)C14—C151.391 (2)
S1—C191.7175 (16)C14—H14A0.9300
N1—C91.320 (2)C15—H15A0.9300
N1—C11.370 (2)C16—C171.507 (2)
N2—C161.286 (2)C17—C181.540 (2)
N2—N31.4048 (18)C17—H17A0.9700
N3—C231.4087 (19)C17—H17B0.9700
N3—C181.489 (2)C18—C191.505 (2)
C1—C61.418 (2)C18—H18A0.9800
C1—C21.418 (2)C19—C201.368 (2)
C2—C31.370 (3)C20—C211.432 (2)
C2—H2A0.9300C20—H20A0.9300
C3—C41.410 (2)C21—C221.364 (2)
C3—H3A0.9300C21—H21A0.9300
C4—C51.372 (2)C22—H22A0.9300
C5—C61.418 (2)C23—C281.399 (2)
C5—H5A0.9300C23—C241.403 (2)
C6—C71.429 (2)C24—C251.393 (2)
C7—C81.384 (2)C24—H24A0.9300
C7—C101.488 (2)C25—C261.384 (3)
C8—C91.438 (2)C25—H25A0.9300
C8—C161.485 (2)C26—C271.393 (2)
C9—C291.502 (2)C26—H26A0.9300
C10—C111.396 (2)C27—C281.394 (2)
C10—C151.397 (2)C27—H27A0.9300
C11—C121.392 (2)C28—H28A0.9300
C11—H11A0.9300C29—H29A0.9600
C12—C131.388 (2)C29—H29B0.9600
C12—H12A0.9300C29—H29C0.9600
C13—C141.392 (2)
C22—S1—C1992.31 (8)N2—C16—C8121.76 (14)
C9—N1—C1118.71 (14)N2—C16—C17114.33 (14)
C16—N2—N3109.26 (13)C8—C16—C17123.90 (13)
N2—N3—C23115.46 (12)C16—C17—C18102.24 (13)
N2—N3—C18111.06 (12)C16—C17—H17A111.3
C23—N3—C18120.22 (12)C18—C17—H17A111.3
N1—C1—C6122.98 (14)C16—C17—H17B111.3
N1—C1—C2117.65 (15)C18—C17—H17B111.3
C6—C1—C2119.37 (15)H17A—C17—H17B109.2
C3—C2—C1120.84 (16)N3—C18—C19112.48 (13)
C3—C2—H2A119.6N3—C18—C17102.95 (12)
C1—C2—H2A119.6C19—C18—C17112.01 (13)
C2—C3—C4119.08 (15)N3—C18—H18A109.7
C2—C3—H3A120.5C19—C18—H18A109.7
C4—C3—H3A120.5C17—C18—H18A109.7
C5—C4—C3122.16 (16)C20—C19—C18126.44 (14)
C5—C4—Cl1119.42 (13)C20—C19—S1111.43 (12)
C3—C4—Cl1118.41 (12)C18—C19—S1122.04 (11)
C4—C5—C6119.31 (15)C19—C20—C21112.18 (15)
C4—C5—H5A120.3C19—C20—H20A123.9
C6—C5—H5A120.3C21—C20—H20A123.9
C1—C6—C5119.20 (14)C22—C21—C20112.77 (14)
C1—C6—C7117.69 (14)C22—C21—H21A123.6
C5—C6—C7123.10 (14)C20—C21—H21A123.6
C8—C7—C6118.57 (14)C21—C22—S1111.31 (12)
C8—C7—C10121.26 (13)C21—C22—H22A124.3
C6—C7—C10120.14 (14)S1—C22—H22A124.3
C7—C8—C9119.51 (14)C28—C23—C24119.24 (14)
C7—C8—C16119.99 (14)C28—C23—N3121.11 (13)
C9—C8—C16120.44 (14)C24—C23—N3119.64 (14)
N1—C9—C8122.51 (15)C25—C24—C23119.85 (15)
N1—C9—C29116.62 (15)C25—C24—H24A120.1
C8—C9—C29120.87 (14)C23—C24—H24A120.1
C11—C10—C15119.21 (14)C26—C25—C24121.11 (15)
C11—C10—C7120.38 (14)C26—C25—H25A119.4
C15—C10—C7120.40 (13)C24—C25—H25A119.4
C12—C11—C10120.37 (15)C25—C26—C27118.97 (15)
C12—C11—H11A119.8C25—C26—H26A120.5
C10—C11—H11A119.8C27—C26—H26A120.5
C13—C12—C11120.23 (15)C26—C27—C28120.94 (16)
C13—C12—H12A119.9C26—C27—H27A119.5
C11—C12—H12A119.9C28—C27—H27A119.5
C12—C13—C14119.69 (15)C27—C28—C23119.87 (15)
C12—C13—H13A120.2C27—C28—H28A120.1
C14—C13—H13A120.2C23—C28—H28A120.1
C15—C14—C13120.31 (15)C9—C29—H29A109.5
C15—C14—H14A119.8C9—C29—H29B109.5
C13—C14—H14A119.8H29A—C29—H29B109.5
C14—C15—C10120.20 (15)C9—C29—H29C109.5
C14—C15—H15A119.9H29A—C29—H29C109.5
C10—C15—H15A119.9H29B—C29—H29C109.5
C16—N2—N3—C23−144.75 (14)C13—C14—C15—C100.2 (2)
C16—N2—N3—C18−3.41 (17)C11—C10—C15—C140.1 (2)
C9—N1—C1—C6−0.4 (2)C7—C10—C15—C14178.69 (15)
C9—N1—C1—C2179.44 (14)N3—N2—C16—C8−177.80 (13)
N1—C1—C2—C3−178.97 (15)N3—N2—C16—C171.13 (19)
C6—C1—C2—C30.9 (2)C7—C8—C16—N2−120.77 (17)
C1—C2—C3—C40.9 (3)C9—C8—C16—N261.8 (2)
C2—C3—C4—C5−1.6 (3)C7—C8—C16—C1760.4 (2)
C2—C3—C4—Cl1177.65 (13)C9—C8—C16—C17−117.06 (18)
C3—C4—C5—C60.4 (3)N2—C16—C17—C181.44 (19)
Cl1—C4—C5—C6−178.82 (12)C8—C16—C17—C18−179.66 (14)
N1—C1—C6—C5177.80 (15)N2—N3—C18—C19124.85 (13)
C2—C1—C6—C5−2.0 (2)C23—N3—C18—C19−95.91 (16)
N1—C1—C6—C7−1.0 (2)N2—N3—C18—C174.09 (16)
C2—C1—C6—C7179.24 (14)C23—N3—C18—C17143.34 (14)
C4—C5—C6—C11.4 (2)C16—C17—C18—N3−3.15 (16)
C4—C5—C6—C7−179.95 (15)C16—C17—C18—C19−124.23 (14)
C1—C6—C7—C82.0 (2)N3—C18—C19—C20−176.58 (14)
C5—C6—C7—C8−176.68 (15)C17—C18—C19—C20−61.2 (2)
C1—C6—C7—C10179.99 (14)N3—C18—C19—S1−0.30 (18)
C5—C6—C7—C101.3 (2)C17—C18—C19—S1115.10 (14)
C6—C7—C8—C9−1.8 (2)C22—S1—C19—C20−0.18 (12)
C10—C7—C8—C9−179.77 (14)C22—S1—C19—C18−176.97 (13)
C6—C7—C8—C16−179.31 (14)C18—C19—C20—C21176.45 (14)
C10—C7—C8—C162.7 (2)S1—C19—C20—C21−0.17 (17)
C1—N1—C9—C80.6 (2)C19—C20—C21—C220.6 (2)
C1—N1—C9—C29179.45 (14)C20—C21—C22—S1−0.68 (18)
C7—C8—C9—N10.5 (2)C19—S1—C22—C210.50 (13)
C16—C8—C9—N1177.97 (14)N2—N3—C23—C28−13.4 (2)
C7—C8—C9—C29−178.28 (15)C18—N3—C23—C28−151.01 (15)
C16—C8—C9—C29−0.8 (2)N2—N3—C23—C24167.96 (14)
C8—C7—C10—C1160.0 (2)C18—N3—C23—C2430.4 (2)
C6—C7—C10—C11−117.87 (16)C28—C23—C24—C251.9 (2)
C8—C7—C10—C15−118.56 (17)N3—C23—C24—C25−179.51 (14)
C6—C7—C10—C1563.5 (2)C23—C24—C25—C26−1.3 (2)
C15—C10—C11—C12−0.2 (2)C24—C25—C26—C270.1 (3)
C7—C10—C11—C12−178.85 (14)C25—C26—C27—C280.5 (3)
C10—C11—C12—C130.1 (2)C26—C27—C28—C230.1 (3)
C11—C12—C13—C140.1 (3)C24—C23—C28—C27−1.3 (2)
C12—C13—C14—C15−0.3 (3)N3—C23—C28—C27−179.88 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C15—H15A···N1i0.932.603.490 (2)161
C3—H3A···Cg1ii0.932.633.481 (2)152
C12—H12A···Cg1iii0.932.833.487 (2)129
C17—H17B···Cg20.972.883.6916 (19)142
C20—H20A···Cg3iii0.932.893.7523 (18)155
C21—H21A···Cg4iv0.932.843.6084 (18)141
C22—H22A···Cg3v0.932.883.5750 (18)132
C29—H29B···Cg5vi0.962.893.694 (2)142

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) −x+1, y−1/2, −z−1/2; (iii) −x, y−1/2, −z−1/2; (iv) x, −y−3/2, z−1/2; (v) −x, y+1/2, −z−1/2; (vi) −x+1, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2922).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem.31, 1031–1035. [PubMed]
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L. & Tzeng, C.-C. (2001). J. Med. Chem.44, 2374–2377. [PubMed]
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009b). Acta Cryst. E65, 2688–2689. [PMC free article] [PubMed]
  • Fun, H.-K., Yeap, C. S., Sarveswari, S., Vijayakumar, V. & Prasath, R. (2009a). Acta Cryst. E65, o2665–o2666. [PMC free article] [PubMed]
  • Jiang, B. & Si, Y.-G. (2002). J. Org. Chem.67, 9449–9451. [PubMed]
  • Kalluraya, B. & Sreenivasa, S. (1998). Farmaco, 53, 399–404. [PubMed]
  • Katritzky, A. R. & Arend, M. I. (1998). J. Org. Chem.63, 9989–9991.
  • Maguire, M. P., Sheets, K. R., McVety, K., Spada, A. P. & Zilberstein, A. (1994). J. Med. Chem.37, 2129–2137. [PubMed]
  • Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem.13, 324–326. [PubMed]
  • Michael, J. P. (1997). Nat. Prod. Rep.14, 605–608.
  • Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.
  • Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem.35, 1021–1026. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skraup, H. (1880). Ber. Dtsch Chem. Ges.13, 2086–2088.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography