PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2968–o2969.
Published online 2009 October 31. doi:  10.1107/S1600536809044869
PMCID: PMC2971143

2-Bromo-N′-[(2Z)-butan-2-yl­idene]-5-methoxy­benzohydrazide

Abstract

In the title compound, C12H15BrN2O2, the dihedral angle between the benzene ring and the mean plane of the amide grouping is 77.7 (8)°. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur, and the packing is further supported by C—H(...)O and C—H(...)Br inter­actions and weak π–π ring stacking inter­actions.

Related literature

Hydrazides and their corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems, see: Narayana et al. (2005 [triangle]; 2005a [triangle]). For the biological activity of substituted hydrazides, see: Cajocorius et al. (1977 [triangle]). Hydrazides are inter­mediates in the production of many pharmaceutically important compounds, see: Liu et al. (2006 [triangle]). For related structures, see: Butcher et al. (2007 [triangle]); Hou (2009 [triangle]); Li & Ban (2009 [triangle]); Sarojini et al. (2007a [triangle],b [triangle],c [triangle],d [triangle]). For the MOPAC AM1 calculations, see: Schmidt & Polik (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2968-scheme1.jpg

Experimental

Crystal data

  • C12H15BrN2O2
  • M r = 299.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2968-efi1.jpg
  • a = 8.0942 (1) Å
  • b = 14.2475 (2) Å
  • c = 11.2974 (2) Å
  • β = 91.1519 (13)°
  • V = 1302.58 (3) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 4.25 mm−1
  • T = 200 K
  • 0.56 × 0.47 × 0.35 mm

Data collection

  • Oxford Diffraction Gemini R CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007 [triangle]) T min = 0.452, T max = 1.000
  • 7962 measured reflections
  • 2577 independent reflections
  • 2484 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.122
  • S = 1.07
  • 2577 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −1.07 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044869/ds2010sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044869/ds2010Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

LPS thanks the University of Mysore for use of their research facilities under the MPhil programme in Chemistry for the year 2008–2009. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Hydrazides and the corresponding Schiff bases are useful precursors in the synthesis of several heterocyclic systems (Narayana et al. 2005; 2005a). Some substituted hydrazides are reported to exhibit carcinostatic activity against several types of tumors (Cajocorius et al. 1977) and also possess antimicrobial activity. It is also used as an intermediate in many pharmaceutically important compounds (Liu et al. 2006). In continuation with our studies on the structures of hydrazides and their Schiff bases (Sarojini et al. 2007a, 2007b, 2007c, 2007d; Butcher et al. 2007) a new Schiff base, (I), C12H15BrN2O2, has been synthesized and its crystal structure is now reported.

In the title compound, C12H15BrN2O2, (Fig. 1), the 2-bromo and 5-methoxy groups are in the plane of the benzene ring. The dihedral angle between the mean planes of the carbonyl group (–C6—C8(O2)—N1—N2-) and benzene ring is 77.7 (8)°. The C1—C6—C8—O2 and C1—C6—C8—N1 torsion angles (-101.1 (3)° & -103.7 (3)°) support this observation. Crystal packing is supported by a collection of intermediate N1—H1A—O2 (-x,-y + 2,-z + 1) intermolecular interactions (see Table 1) which produces a cooperative network of infinite O—H···O—H···O—H chains arranged diagonally along the (101) plane of the unit cell (Fig. 2). In addition, weak intermolecular C10—H10A···O2 (-x,-y + 2,-z + 1), C11—H11A···O1 (-x + 1, y - 1/2,-z + 1/2), C7—H7B···O2 (-x,-y + 2,-z) and C10—H10A···Br (x,-y + 3/2,z1/2) interactions (Table 1) along with Cg1···Cg1 π-π ring stacking interactions at 3.869 (1)Å (2 - x,1 - y,1 - z; slippage = 1.43 (2) Å, where Cg1 = C1—C6), collectively, slightly influence crystal packing in this crystalline environment.

After a MOPAC AM1 computational calculation (Schmidt, 2007), the dihedral angle between the mean planes of the carbonyl group (–C6—C8(O2)—N1—N2-) and benzene ring becomes 84.0 (8)°, significantly greater that the 77.7 (8)° seen in the crystal. This supports the observation of a collective action of the intermediate and weak hydrogen bond interactions along with weak intermolecular π-π stacking interactions which influence crystal packing stability.

Experimental

A mixture of 2-bromo-5-methoxybenzohydrazide (2.45 g, 0.01 mol) and ethyl methyl ketone(1.44 g, 0.02 mol) in 20 ml of ethanol containing a drop of dilute sulfuric acid was refluxed for about 2 h (Scheme 2). On cooling, the solid separated was filtered and recrystallized from ethyl methyl ketone. M.P.: 385 K. Analysis for C12H15BrN2O2: Found (Calculated): C: 48.14 (48.18); H: 5.02 (5.05%); N: 9.31 (9.36%).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with N—H = 0.88, C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2–1.5 Ueq(C,N).

Figures

Fig. 1.
Molecular structure of C12H15BrN2O2 showing atom labeling scheme and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the title compound, (I), viewed down the b axis. Dashed lines indicate intermediate intermolecular N—H···O and C—H···O interactions which produces a network of infinite ...

Crystal data

C12H15BrN2O2F(000) = 608
Mr = 299.17Dx = 1.526 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 8517 reflections
a = 8.0942 (1) Åθ = 5.0–73.4°
b = 14.2475 (2) ŵ = 4.25 mm1
c = 11.2974 (2) ÅT = 200 K
β = 91.1519 (13)°Chunk, colorless
V = 1302.58 (3) Å30.56 × 0.47 × 0.35 mm
Z = 4

Data collection

Oxford Diffraction Gemini R CCD diffractometer2577 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
graphiteRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 5.0°
[var phi] and ω scansh = −10→9
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)k = −16→17
Tmin = 0.452, Tmax = 1.000l = −9→13
7962 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0673P)2 + 1.7115P] where P = (Fo2 + 2Fc2)/3
2577 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = −1.07 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br−0.00062 (5)0.75926 (3)0.23886 (3)0.05362 (18)
O10.3113 (3)1.07458 (17)−0.03054 (18)0.0478 (6)
O2−0.0433 (2)1.01275 (15)0.35066 (16)0.0358 (5)
N10.1775 (3)0.93324 (16)0.42004 (18)0.0306 (5)
H1A0.15500.94650.49410.037*
N20.3148 (3)0.87860 (17)0.39363 (19)0.0318 (5)
C10.0954 (3)0.85866 (18)0.1528 (2)0.0305 (5)
C20.1316 (4)0.8445 (2)0.0351 (2)0.0361 (6)
H2A0.10730.7858−0.00120.043*
C30.2033 (3)0.9154 (2)−0.0303 (2)0.0316 (6)
H3A0.22850.9056−0.11110.038*
C40.2379 (3)1.00067 (19)0.0234 (2)0.0294 (5)
C50.1981 (3)1.01479 (18)0.1415 (2)0.0285 (5)
H5A0.21951.07390.17750.034*
C60.1282 (3)0.94403 (17)0.2066 (2)0.0244 (5)
C70.3619 (4)1.0618 (3)−0.1501 (3)0.0525 (9)
H7A0.42021.1181−0.17660.079*
H7B0.26441.0512−0.20120.079*
H7C0.43571.0075−0.15440.079*
C80.0802 (3)0.96538 (18)0.3318 (2)0.0258 (5)
C90.4048 (3)0.8504 (2)0.4794 (2)0.0357 (6)
C100.3829 (5)0.8738 (3)0.6083 (3)0.0624 (12)
H10A0.26760.86320.62950.094*
H10B0.41180.93970.62210.094*
H10C0.45510.83360.65700.094*
C110.5478 (4)0.7880 (3)0.4479 (3)0.0485 (8)
H11A0.53080.72530.48350.058*
H11B0.54860.78000.36090.058*
C120.7109 (5)0.8246 (4)0.4882 (5)0.0764 (13)
H12A0.79690.77860.47020.115*
H12B0.70970.83570.57380.115*
H12C0.73390.88370.44720.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0949 (4)0.0345 (2)0.0315 (2)−0.01786 (16)0.00182 (18)0.00284 (12)
O10.0666 (14)0.0508 (13)0.0261 (11)−0.0214 (11)0.0079 (9)−0.0005 (9)
O20.0396 (10)0.0467 (12)0.0210 (9)0.0198 (8)−0.0009 (7)−0.0063 (8)
N10.0373 (11)0.0386 (12)0.0159 (10)0.0145 (9)0.0007 (8)−0.0042 (8)
N20.0371 (11)0.0346 (12)0.0238 (11)0.0125 (9)0.0026 (9)−0.0023 (9)
C10.0452 (14)0.0245 (12)0.0219 (12)0.0002 (10)0.0004 (10)−0.0003 (10)
C20.0576 (17)0.0292 (13)0.0212 (13)0.0033 (12)−0.0032 (11)−0.0081 (10)
C30.0397 (13)0.0395 (15)0.0157 (11)0.0066 (11)0.0019 (9)−0.0066 (10)
C40.0322 (12)0.0352 (14)0.0206 (12)−0.0005 (10)−0.0021 (10)−0.0007 (10)
C50.0342 (12)0.0283 (12)0.0230 (12)0.0015 (10)−0.0020 (9)−0.0070 (10)
C60.0281 (11)0.0275 (12)0.0175 (11)0.0092 (9)−0.0018 (8)−0.0033 (9)
C70.0564 (19)0.076 (2)0.0250 (15)−0.0218 (17)0.0066 (13)0.0033 (15)
C80.0327 (12)0.0255 (12)0.0192 (11)0.0047 (9)−0.0004 (9)−0.0039 (9)
C90.0391 (14)0.0418 (15)0.0263 (13)0.0132 (12)0.0014 (10)0.0018 (11)
C100.060 (2)0.104 (3)0.0233 (15)0.040 (2)−0.0041 (14)0.0002 (17)
C110.0513 (18)0.0549 (19)0.0393 (17)0.0250 (15)0.0012 (13)0.0036 (15)
C120.050 (2)0.100 (4)0.079 (3)0.016 (2)0.004 (2)0.004 (3)

Geometric parameters (Å, °)

Br—C11.894 (3)C5—H5A0.9500
O1—C41.359 (3)C6—C81.506 (3)
O1—C71.431 (4)C7—H7A0.9800
O2—C81.228 (3)C7—H7B0.9800
N1—C81.338 (3)C7—H7C0.9800
N1—N21.394 (3)C9—C101.507 (4)
N1—H1A0.8800C9—C111.508 (4)
N2—C91.266 (4)C10—H10A0.9800
C1—C21.382 (4)C10—H10B0.9800
C1—C61.383 (3)C10—H10C0.9800
C2—C31.386 (4)C11—C121.482 (6)
C2—H2A0.9500C11—H11A0.9900
C3—C41.383 (4)C11—H11B0.9900
C3—H3A0.9500C12—H12A0.9800
C4—C51.393 (4)C12—H12B0.9800
C5—C61.376 (4)C12—H12C0.9800
C4—O1—C7117.4 (2)H7A—C7—H7C109.5
C8—N1—N2119.4 (2)H7B—C7—H7C109.5
C8—N1—H1A120.3O2—C8—N1121.9 (2)
N2—N1—H1A120.3O2—C8—C6120.0 (2)
C9—N2—N1117.5 (2)N1—C8—C6118.2 (2)
C2—C1—C6120.6 (2)N2—C9—C10126.3 (3)
C2—C1—Br118.8 (2)N2—C9—C11116.0 (3)
C6—C1—Br120.59 (19)C10—C9—C11117.6 (3)
C1—C2—C3120.3 (2)C9—C10—H10A109.5
C1—C2—H2A119.9C9—C10—H10B109.5
C3—C2—H2A119.9H10A—C10—H10B109.5
C4—C3—C2119.4 (2)C9—C10—H10C109.5
C4—C3—H3A120.3H10A—C10—H10C109.5
C2—C3—H3A120.3H10B—C10—H10C109.5
O1—C4—C3124.8 (2)C12—C11—C9113.8 (3)
O1—C4—C5115.4 (2)C12—C11—H11A108.8
C3—C4—C5119.8 (2)C9—C11—H11A108.8
C6—C5—C4120.8 (2)C12—C11—H11B108.8
C6—C5—H5A119.6C9—C11—H11B108.8
C4—C5—H5A119.6H11A—C11—H11B107.7
C5—C6—C1119.1 (2)C11—C12—H12A109.5
C5—C6—C8118.1 (2)C11—C12—H12B109.5
C1—C6—C8122.7 (2)H12A—C12—H12B109.5
O1—C7—H7A109.5C11—C12—H12C109.5
O1—C7—H7B109.5H12A—C12—H12C109.5
H7A—C7—H7B109.5H12B—C12—H12C109.5
O1—C7—H7C109.5
C8—N1—N2—C9179.2 (3)Br—C1—C6—C5179.97 (19)
C6—C1—C2—C30.8 (4)C2—C1—C6—C8175.6 (2)
Br—C1—C2—C3−179.4 (2)Br—C1—C6—C8−4.2 (3)
C1—C2—C3—C4−0.2 (4)N2—N1—C8—O2179.0 (3)
C7—O1—C4—C3−2.5 (4)N2—N1—C8—C6−2.5 (4)
C7—O1—C4—C5177.0 (3)C5—C6—C8—O274.8 (3)
C2—C3—C4—O1178.4 (3)C1—C6—C8—O2−101.1 (3)
C2—C3—C4—C5−1.0 (4)C5—C6—C8—N1−103.7 (3)
O1—C4—C5—C6−177.9 (2)C1—C6—C8—N180.4 (3)
C3—C4—C5—C61.6 (4)N1—N2—C9—C10−3.0 (5)
C4—C5—C6—C1−0.9 (4)N1—N2—C9—C11177.4 (3)
C4—C5—C6—C8−177.0 (2)N2—C9—C11—C12122.5 (4)
C2—C1—C6—C5−0.3 (4)C10—C9—C11—C12−57.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7B···O2i0.982.603.561 (4)166
C10—H10A···Brii0.983.073.949 (5)151
C10—H10A···O2iii0.982.553.231 (4)127
C11—H11A···O1iv0.992.553.373 (4)141
N1—H1A···O2iii0.882.072.932 (3)165

Symmetry codes: (i) −x, −y+2, −z; (ii) x, −y+3/2, z+1/2; (iii) −x, −y+2, −z+1; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2010).

References

  • Butcher, R. J., Jasinski, J. P., Narayana, B., Sunil, K. & Yathirajan, H. S. (2007). Acta Cryst. E63, o3652.
  • Cajocorius, J., Cojocarius, Z. & Niester, C. (1977). Rev. Chim.28, 15–18.
  • Hou, J.-L. (2009). Acta Cryst. E65, o851. [PMC free article] [PubMed]
  • Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o883. [PMC free article] [PubMed]
  • Liu, F., Stephen, A. G., Adainson, C. S., Gousset, K., Aman, M. J., Freed, E. O., Fisher, R. J. & Burke, T. R. Jr (2006). Org. Lett.8, 5165–5168. [PMC free article] [PubMed]
  • Narayana, B., Ashalatha, B. V., Vijayaraj, K. K., Fernandes, J. & Sarojini, B. K. (2005). Bioorg. Med. Chem.13, 4638–4644. [PubMed]
  • Narayana, B., Vijayaraj, K. K., Ashalatha, B. V. & Suchetha Kumari, N. (2005a). Pharmazie, 338, 373–377. [PubMed]
  • Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  • Sarojini, B. K., Mustafa, K., Narayana, B., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, o4419.
  • Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007b). Acta Cryst. E63, o3551.
  • Sarojini, B. K., Narayana, B., Sunil, K., Yathirajan, H. S. & Bolte, M. (2007c). Acta Cryst. E63, o3862–o3863.
  • Sarojini, B. K., Yathirajan, H. S., Sunil, K., Narayana, B. & Bolte, M. (2007d). Acta Cryst. E63, o3487.
  • Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; available from http://www.webmo.net.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography