PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2637.
Published online 2009 October 3. doi:  10.1107/S1600536809039555
PMCID: PMC2971136

(5Z)-5-(2-Hydroxy­benzyl­idene)-2-thioxo-1,3-thia­zolidin-4-one methanol hemisolvate

Abstract

In the title compound, C10H7NO2S2·0.5CH3OH, the dihedral angle between the aromatic rings is 11.43 (11)° and a short intra­molecular C—H(...)S contact occurs. The methanol solvent mol­ecule is equally disordered over two sets of sites. In the crystal, inversion dimers linked by pairs of N—H(...)O hydrogen bonds occur. The methanol solvent mol­ecule connects the dimers through O—H(...)S and O—H(...)O inter­molecular hydrogen bonds. Further stability is afforded by C—H(...)π and π–π inter­actions [centroid–centroid separation = 3.5948 (13) Å].

Related literature

For related structures, see: Barreiro et al. (2007 [triangle]); Delgado et al. (2006 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2637-scheme1.jpg

Experimental

Crystal data

  • C10H7NO2S2·0.5CH4O
  • M r = 253.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2637-efi1.jpg
  • a = 20.4859 (16) Å
  • b = 6.4422 (4) Å
  • c = 18.4377 (15) Å
  • β = 108.724 (4)°
  • V = 2304.5 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 296 K
  • 0.28 × 0.15 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.925, T max = 0.947
  • 11803 measured reflections
  • 2636 independent reflections
  • 1562 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.101
  • S = 1.03
  • 2636 reflections
  • 167 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039555/hb5115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039555/hb5115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MAR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–111212-PS2–200).

supplementary crystallographic information

Comment

The title compound (I, Fig. 1) has been prepared owing to medicinal properties of rhodanine derivatives.

The crystal structure of (II) (Z)-5-(2-Fluorobenzylidene)-2-thioxothiazolidin-4-one (Delgado et al., 2006) and (III) 5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) have been published. The title compound (I) differs from (III) due to solvate i.e methanol instead of dimethylsulfoxide.

The title molecule basically consits of dimers due to intermolecular H-bondings of N—H···O type with R22(8) ring motifs (Bernstein et al., 1995). There exist a strong interamolecular H-bonding of C—H···S type and two weak intramolecular H-bondings of C–H···O (Table 1, Fig. 2) forming a twisted S(6) and two planar S(5) ring motifs. In (I), the 2-Hydroxybenzylidene moiety A (C1—C7/O1) and the rhodanine moiety B (C8/C9/N1/C10/S1/S2/O2) are planar with maximum r.m.s. deviations of 0.0042 and 0.0044 Å, respectively from their mean square planes. The dihedral angle between A/B is 11.35 (10)°. The methanol solvent of crystallization connects the dimers through O—H···S and O—H···O intermolecular H-bondings and form another ring motif R33(10) (Fig. 2). The molecules are stabilized in the form of two dimensional polymeric networks due to C—H···π interaction (Table 1) and π–π interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between Cg1···Cg2i [symmetry code i = x, 1 + y, z] and Cg2—Cg1ii [symmetry code ii = x, -1 + y, z] is 3.5948 (13) Å.

Experimental

Rhodanine (0.266 g, 0.2 mol), salicylaldehyde (0.244 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in methanol to affoard light red needles of (I).

Refinement

The multiplicity factor of C and O atom of methanol was intially refined and later it was fixed to 0.5.

The coordinates of H-atom of hydroxy group were refined. The coordinates of H-atoms of methanol were also refined with constraints. The H-atoms were positioned geometrically with N—H = 0.86, C—H = 0.93 Å for aromatic like H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl H-atoms and x = 1.2 for all othe H atoms.

Figures

Fig. 1.
View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.
Fig. 2.
The partial packing of (I), which shows that molecules form dimers and dimers are connected to each other with the help of methanol by intermolecular H-bondings. The double dotted lines represent intramolecular H-bondings.

Crystal data

C10H7NO2S2·0.5CH4OF(000) = 1048
Mr = 253.33Dx = 1.460 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2636 reflections
a = 20.4859 (16) Åθ = 2.1–27.5°
b = 6.4422 (4) ŵ = 0.45 mm1
c = 18.4377 (15) ÅT = 296 K
β = 108.724 (4)°Cut needle, light red
V = 2304.5 (3) Å30.28 × 0.15 × 0.12 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer2636 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
graphiteRint = 0.040
Detector resolution: 7.50 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = −22→26
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −5→8
Tmin = 0.925, Tmax = 0.947l = −23→22
11803 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.0357P)2 + 1.2743P] where P = (Fo2 + 2Fc2)/3
2636 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.30 e Å3
8 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.15938 (4)0.58242 (10)−0.00444 (4)0.0600 (2)
S20.14589 (4)0.94002 (13)−0.11023 (5)0.0802 (3)
O10.06021 (9)0.1385 (3)0.18770 (11)0.0619 (7)
O20.01091 (8)0.7729 (2)0.06117 (9)0.0516 (6)
N10.06936 (9)0.8655 (3)−0.02055 (10)0.0467 (7)
C10.14189 (11)0.2372 (3)0.12922 (12)0.0389 (7)
C20.12016 (12)0.0955 (3)0.17442 (12)0.0428 (8)
C30.15870 (12)−0.0790 (4)0.20299 (13)0.0485 (8)
C40.21827 (13)−0.1171 (4)0.18715 (13)0.0531 (9)
C50.24140 (13)0.0198 (4)0.14359 (14)0.0566 (9)
C60.20350 (13)0.1944 (4)0.11522 (13)0.0512 (9)
C70.10043 (11)0.4192 (3)0.10120 (12)0.0422 (8)
C80.10408 (11)0.5631 (3)0.05020 (12)0.0396 (7)
C90.05620 (11)0.7391 (3)0.03308 (12)0.0405 (8)
C100.12115 (12)0.8120 (4)−0.04789 (13)0.0502 (8)
O11−0.0100 (5)0.8280 (6)0.2318 (3)0.066 (3)0.500
C110.014 (2)0.6235 (11)0.262 (3)0.112 (14)0.500
H1N0.045380.97578−0.036430.0561*
H1O0.049060.039090.208880.0743*
H30.14403−0.171510.233270.0582*
H40.24344−0.236700.205980.0637*
H50.28232−0.005710.133480.0680*
H60.219320.286730.085850.0614*
H70.065210.440090.122070.0507*
H11−0.035 (3)0.804 (7)0.1868 (16)0.0792*0.500
H11A−0.012 (4)0.500 (7)0.244 (5)0.1677*0.500
H11B0.019 (4)0.608 (13)0.316 (4)0.1677*0.500
H11C0.058 (3)0.572 (11)0.265 (5)0.1677*0.500

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0676 (4)0.0634 (4)0.0594 (4)0.0280 (4)0.0349 (4)0.0186 (3)
S20.0750 (5)0.0963 (6)0.0837 (6)0.0304 (4)0.0457 (4)0.0451 (5)
O10.0609 (11)0.0550 (11)0.0805 (13)0.0130 (9)0.0376 (10)0.0213 (9)
O20.0495 (10)0.0516 (10)0.0591 (11)0.0152 (8)0.0249 (9)0.0124 (8)
N10.0446 (12)0.0464 (11)0.0511 (12)0.0133 (9)0.0180 (10)0.0116 (10)
C10.0446 (13)0.0359 (12)0.0364 (13)0.0055 (10)0.0131 (10)−0.0019 (10)
C20.0448 (13)0.0401 (13)0.0433 (13)0.0031 (11)0.0137 (11)−0.0050 (11)
C30.0596 (16)0.0406 (13)0.0448 (14)0.0038 (12)0.0162 (12)0.0050 (11)
C40.0631 (17)0.0431 (14)0.0490 (15)0.0180 (12)0.0124 (13)0.0002 (12)
C50.0598 (16)0.0600 (16)0.0560 (16)0.0212 (13)0.0269 (13)0.0061 (13)
C60.0589 (16)0.0516 (15)0.0481 (15)0.0113 (13)0.0243 (12)0.0067 (12)
C70.0425 (13)0.0409 (13)0.0439 (13)0.0037 (10)0.0148 (11)−0.0049 (11)
C80.0422 (13)0.0374 (12)0.0387 (12)0.0049 (10)0.0123 (10)−0.0002 (11)
C90.0385 (13)0.0410 (13)0.0394 (13)0.0029 (11)0.0087 (11)−0.0007 (11)
C100.0483 (14)0.0550 (15)0.0468 (15)0.0131 (12)0.0146 (12)0.0081 (12)
O110.082 (7)0.067 (2)0.049 (5)−0.007 (2)0.022 (5)−0.0010 (19)
C110.16 (3)0.063 (3)0.15 (3)−0.004 (7)0.10 (2)0.002 (8)

Geometric parameters (Å, °)

S1—C81.745 (2)C2—C31.378 (3)
S1—C101.744 (3)C3—C41.365 (4)
S2—C101.622 (3)C4—C51.375 (4)
O1—C21.356 (3)C5—C61.372 (4)
O2—C91.219 (3)C7—C81.340 (3)
O1—H1O0.8200C8—C91.466 (3)
O11—C111.45 (2)C3—H30.9300
O11—H110.84 (3)C4—H40.9300
N1—C91.373 (3)C5—H50.9300
N1—C101.357 (3)C6—H60.9300
N1—H1N0.8600C7—H70.9300
C1—C71.443 (3)C11—H11A0.96 (6)
C1—C21.402 (3)C11—H11B0.97 (9)
C1—C61.395 (4)C11—H11C0.95 (8)
C8—S1—C1092.67 (11)O2—C9—C8126.50 (19)
C2—O1—H1O109.00O2—C9—N1123.54 (19)
C11—O11—H11104 (4)S1—C10—S2124.08 (16)
C9—N1—C10118.3 (2)S2—C10—N1126.4 (2)
C10—N1—H1N121.00S1—C10—N1109.52 (17)
C9—N1—H1N121.00C4—C3—H3120.00
C2—C1—C7118.7 (2)C2—C3—H3120.00
C2—C1—C6117.4 (2)C3—C4—H4120.00
C6—C1—C7123.9 (2)C5—C4—H4120.00
O1—C2—C3122.6 (2)C6—C5—H5120.00
O1—C2—C1116.96 (19)C4—C5—H5120.00
C1—C2—C3120.4 (2)C1—C6—H6119.00
C2—C3—C4120.5 (2)C5—C6—H6119.00
C3—C4—C5120.6 (2)C1—C7—H7115.00
C4—C5—C6119.3 (3)C8—C7—H7115.00
C1—C6—C5121.8 (2)O11—C11—H11A123 (6)
C1—C7—C8130.9 (2)O11—C11—H11B113 (6)
S1—C8—C9109.51 (15)O11—C11—H11C123 (6)
C7—C8—C9120.2 (2)H11A—C11—H11B98 (8)
S1—C8—C7130.34 (18)H11A—C11—H11C98 (7)
N1—C9—C8109.96 (19)H11B—C11—H11C97 (8)
C10—S1—C8—C7179.8 (2)C2—C1—C7—C8−170.5 (2)
C10—S1—C8—C90.0 (2)C6—C1—C7—C810.7 (4)
C8—S1—C10—S2179.12 (17)O1—C2—C3—C4179.1 (2)
C8—S1—C10—N10.05 (18)C1—C2—C3—C4−0.5 (3)
C10—N1—C9—O2−179.9 (2)C2—C3—C4—C51.2 (4)
C10—N1—C9—C80.1 (3)C3—C4—C5—C6−0.8 (4)
C9—N1—C10—S1−0.1 (3)C4—C5—C6—C1−0.1 (4)
C9—N1—C10—S2−179.14 (18)C1—C7—C8—S12.0 (4)
C6—C1—C2—O1180.0 (2)C1—C7—C8—C9−178.2 (2)
C6—C1—C2—C3−0.4 (3)S1—C8—C9—O2179.96 (19)
C7—C1—C2—O11.1 (3)S1—C8—C9—N1−0.1 (2)
C7—C1—C2—C3−179.3 (2)C7—C8—C9—O20.1 (3)
C2—C1—C6—C50.7 (3)C7—C8—C9—N1−179.90 (19)
C7—C1—C6—C5179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.861.952.811 (2)173
O1—H1O···O11ii0.821.952.735 (7)159
O1—H1O···O11iii0.822.062.871 (7)169
O11—H11···S2i0.84 (3)2.80 (5)3.317 (8)122 (4)
C6—H6···S10.932.573.264 (3)132
C4—H4···Cg2iv0.932.813.599 (3)143

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y−1, z; (iii) −x, y−1, −z+1/2; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5115).

References

  • Barreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des.7, 1964–1973.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Delgado, P., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. & Glidewell, C. (2006). Acta Cryst. C62, o382–o385. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography