PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1418.
Published online 2009 October 23. doi:  10.1107/S1600536809042986
PMCID: PMC2971135

6-p-Cymene)bis­(trichlorido­stannyl)(triethoxy­phosphine-κP)ruthenium(II)

Abstract

In the title complex, [RuSn2(C10H14)Cl6(C6H15O3P)], the Ru—Sn bond lengths [2.5619 (3) and 2.5669 (3) Å] are about 0.3 Å shorter than the sum of the covalent Ru and Sn radii (1.46 + 1.39 = 2.85 Å), in line with other structurally characterized arene ruthenium trichlorido­stannyl derivatives. The Ru(II) atom is surrounded by a para-cymene, a triethylphosphite and two trichloridostannyl ligands in a typical piano-stool coordination.

Related literature

For the synthesis of the P(OMe)3 analogue (η6-p-cymene){bis­(trichlorido­stannyl-κSn)}(trimethyl­phosphite-κP)ruth­enium(II), see: Hodson & Simpson (2004 [triangle]). For the structures of other trichloro­stannyl arene ruthenium derivatives, see: Cordero et al. (2008 [triangle]); Korp & Bernal (1981 [triangle]); Alvarez et al. (1994 [triangle]); Therrien et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1418-scheme1.jpg

Experimental

Crystal data

  • [RuSn2(C10H14)Cl6(C6H15O3P)]
  • M r = 851.51
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1418-efi1.jpg
  • a = 8.8928 (4) Å
  • b = 16.2936 (6) Å
  • c = 18.9520 (11) Å
  • V = 2746.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.01 mm−1
  • T = 173 K
  • 0.17 × 0.15 × 0.08 mm

Data collection

  • Stoe IPDS diffractometer
  • Absorption correction: refined from ΔF (Walker & Stuart, 1983 [triangle]) T min = 0.616, T max = 0.886
  • 26284 measured reflections
  • 4889 independent reflections
  • 4558 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.014
  • wR(F 2) = 0.024
  • S = 0.89
  • 4889 reflections
  • 268 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.26 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2326 Friedel pairs
  • Flack parameter: −0.031 (11)

Data collection: EXPOSE (Stoe, 2000 [triangle]); cell refinement: CELL (Stoe, 2000 [triangle]); data reduction: INTEGRATE (Stoe, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042986/dn2502sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042986/dn2502Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Swiss National Science Foundation (grant No 200021–111795).

supplementary crystallographic information

Comment

Insertion of tin dichloride into ruthenium-halogen bonds remains scarce, in spite of the rich chemistry of this metal. Recently, we reported the synthesis of neutral, anionic and cationic arene ruthenium complexes containing trichlorostannyl ligands (Therrien et al., 2009). A strategy similar to the one used by Hodson & Simpson (Hodson & Simpson, 2004) to synthesize [(η6-iPrC6H4Me)Ru{P(OMe)3}(SnCl3)2] was employed. We have now synthesized the triethylphosphite analogue and obtained good quality crystals of the neutral complex [(η6-iPrC6H4Me)Ru{P(OEt)3}(SnCl3)2].

scheme 1 here

The single-crystal X-ray structure analysis of [(η6-iPrC6H4Me)Ru{P(OEt)3}(SnCl3)2] reveals a typical piano-stool geometry with the ruthenium atom being coordinated by a para-cymene, a triethylphosphite and two trichlorostannyl ligands, see Fig. 1. The Ru—Sn bond lengths [2.5619 (3) and 2.5669 (3) Å] are about 0.3 Å shorter than the sum of the covalent Ru and Sn radii (1.46 + 1.39 = 2.85 Å)(Cordero et al., 2008), but are comparable to those found in other arene-Ru—Sn complexes (Korp & Bernal, 1981; Alvarez et al., 1994; Therrien et al., 2009). Similarly, the Ru—P bond distance [2.2579 (8) Å] is comparable to the one found in [(η6-iPrC6H4Me)Ru{P(OPh)3}Cl2] [2.2642 (8) Å] (Hodson & Simpson, 2004). The distance between Ru and the centroid of the arene ligand is normal at 1.779 Å. No meaningful interactions between independent complexes are observed in the crystal packing, the Cl···H-C distances ranging from 2.753 to 2.947 Å.

Experimental

6-p-Cymene){bis(trichlorostannyl-κSn)} (triethylphosphite-κP)ruthenium(II), was disolved in hot chloroform, and crystals suitable for X-ray diffraction analysis were obtained, after days, by slow evaporation of the chloroform solution.

1H NMR (400 MHz, DMSO-d6, p.p.m.): 6.30 (d, 2H, Hp-cym), 6.08 (d, 2H, Hp-cym), 4.13 (br, 6H, CH2), 3.04 (sept, 1H, CHp-cym), 2.32 (s, 3H, CH3), 1.30 (m, 15H, CH3)

13C{1H} NMR (100 MHz, DMSO-d6, p.p.m.): 118.7 (Cp-cym), 112.1 (Cp-cym), 92.5 (CHp-cym), 91.8 (CHp-cym), 64.3 (CH2), 30.3 (CH), 23.2 (CH3), 19.5 (CH3), 16.1 (CH3)

31P NMR (162 MHz, DMSO-d6): 127.0 p.p.m. (t, 2JP—Sn = 358 Hz)

119Sn NMR (149 MHz, DMSO-d6): -241.4 p.p.m. (d)

Refinement

The H atoms were included in calculated positions and treated as riding on their parent atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (η6-p-cymene){bis(trichlorostannyl-κSn)}- (triethylphosphite-κP)ruthenium(II). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[RuSn2(C10H14)Cl6(C6H15O3P)]F(000) = 1640
Mr = 851.51Dx = 2.060 Mg m3
Orthorhombic, Pc21bMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2bc -2cCell parameters from 28214 reflections
a = 8.8928 (4) Åθ = 1.3–25.6°
b = 16.2936 (6) ŵ = 3.01 mm1
c = 18.9520 (11) ÅT = 173 K
V = 2746.1 (2) Å3Block, orange
Z = 40.17 × 0.15 × 0.08 mm

Data collection

STOE IPDS diffractometer4889 independent reflections
Radiation source: fine-focus sealed tube4558 reflections with I > 2σ(I)
graphiteRint = 0.031
Detector resolution: 0.81 pixels mm-1θmax = 25.2°, θmin = 2.2°
[var phi] oscillation scansh = −10→10
Absorption correction: part of the refinement model (ΔF) Walker & Stuart, 1983k = −19→19
Tmin = 0.616, Tmax = 0.886l = −22→22
26284 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.014H-atom parameters constrained
wR(F2) = 0.024w = 1/[σ2(Fo2) + (0.0108P)2] where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max = 0.002
4889 reflectionsΔρmax = 0.30 e Å3
268 parametersΔρmin = −0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 2326 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.031 (11)

Special details

Experimental. A crystal was mounted at 173 K on a Stoe Image Plate Diffraction System (Stoe & Cie, 2000) using Mo Kα graphite monochromated radiation. Image plate distance 70 mm, [var phi] oscillation scans 0 - 200°, step Δ[var phi] = 1.2°, 3 minutes per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4369 (3)0.18963 (16)0.16104 (15)0.0213 (6)
C20.5192 (3)0.15987 (16)0.21998 (16)0.0215 (7)
H20.57800.11300.21480.026*
C30.5144 (3)0.19905 (16)0.28568 (16)0.0235 (7)
H30.57050.17830.32300.028*
C40.4245 (3)0.27025 (15)0.29587 (15)0.0246 (6)
C50.3507 (3)0.30259 (17)0.23696 (16)0.0248 (7)
H50.29590.35090.24160.030*
C60.3579 (3)0.26348 (17)0.17084 (16)0.0239 (7)
H60.30890.28720.13260.029*
C70.4264 (4)0.13923 (18)0.09405 (16)0.0297 (7)
H70.52210.11030.08780.036*
C80.3037 (4)0.0751 (2)0.1061 (2)0.0446 (9)
H8A0.32800.04290.14700.067*
H8B0.29690.03990.06560.067*
H8C0.20900.10210.11330.067*
C90.3967 (4)0.1888 (2)0.02797 (17)0.0429 (9)
H9A0.29870.21330.03080.064*
H9B0.40140.1535−0.01250.064*
H9C0.47130.23110.02370.064*
C100.4063 (4)0.30860 (18)0.36759 (16)0.0366 (8)
H10A0.39430.36690.36260.055*
H10B0.49380.29740.39560.055*
H10C0.31910.28600.39030.055*
C110.8662 (5)0.1675 (3)0.0268 (2)0.0730 (15)
H11A0.91620.21350.00440.088*
H11B0.94200.13490.05070.088*
C120.7944 (6)0.1187 (3)−0.0257 (2)0.0658 (13)
H12A0.75930.0685−0.00480.099*
H12B0.86480.1063−0.06250.099*
H12C0.71070.1483−0.04500.099*
C210.9359 (3)0.15199 (17)0.21738 (17)0.0309 (7)
H21A0.93120.10430.18690.037*
H21B0.84480.15350.24550.037*
C221.0695 (3)0.14577 (18)0.26462 (17)0.0325 (7)
H22A1.15870.13950.23660.049*
H22B1.05840.09910.29510.049*
H22C1.07740.19470.29260.049*
C311.0134 (3)0.3573 (3)0.07419 (19)0.0437 (8)
H31A1.05850.30660.05770.052*
H31B1.07630.37950.11140.052*
C321.0025 (5)0.4164 (2)0.0157 (2)0.0662 (13)
H32A0.94320.3932−0.02160.099*
H32B1.10150.4286−0.00160.099*
H32C0.95580.46590.03220.099*
Cl10.84138 (10)0.27207 (5)0.38910 (4)0.0376 (2)
Cl21.01393 (8)0.41297 (5)0.26911 (5)0.0376 (2)
Cl30.68442 (9)0.47149 (4)0.35712 (4)0.03178 (17)
Cl40.74952 (9)0.53595 (4)0.14312 (5)0.03448 (18)
Cl50.36171 (9)0.50447 (5)0.17470 (5)0.03609 (19)
Cl60.52068 (10)0.42482 (6)0.01852 (4)0.0458 (2)
O10.7587 (2)0.19798 (12)0.07832 (11)0.0317 (5)
O20.9464 (2)0.22647 (11)0.17462 (10)0.0241 (4)
O30.8625 (2)0.34124 (12)0.10127 (10)0.0284 (5)
P10.79832 (8)0.26190 (4)0.13825 (4)0.02059 (16)
Ru10.59449 (2)0.290061 (12)0.205038 (11)0.01667 (5)
Sn10.775835 (19)0.357677 (11)0.292932 (10)0.02028 (4)
Sn20.57536 (2)0.427118 (11)0.139400 (9)0.02059 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0156 (14)0.0210 (15)0.0272 (16)−0.0021 (12)−0.0001 (13)−0.0017 (12)
C20.0201 (15)0.0139 (14)0.0306 (19)−0.0004 (11)0.0004 (13)0.0023 (12)
C30.0260 (16)0.0221 (15)0.0224 (17)−0.0048 (12)0.0017 (14)0.0062 (14)
C40.0224 (15)0.0224 (16)0.0292 (16)−0.0051 (12)0.0087 (14)−0.0015 (12)
C50.0150 (14)0.0216 (16)0.0378 (17)0.0000 (12)0.0064 (12)−0.0023 (13)
C60.0146 (14)0.0235 (16)0.0337 (18)−0.0006 (12)−0.0033 (13)0.0025 (13)
C70.0255 (17)0.0334 (17)0.0302 (18)0.0005 (14)−0.0040 (14)−0.0062 (13)
C80.0368 (19)0.046 (2)0.051 (2)−0.0132 (16)0.0022 (18)−0.0195 (19)
C90.052 (2)0.048 (2)0.0291 (19)0.0073 (18)−0.0113 (17)−0.0041 (15)
C100.0404 (19)0.0359 (19)0.0334 (18)−0.0027 (15)0.0139 (16)−0.0040 (14)
C110.036 (2)0.110 (4)0.073 (3)−0.001 (2)0.016 (2)−0.063 (3)
C120.085 (4)0.072 (3)0.041 (3)0.031 (2)0.001 (2)−0.020 (2)
C210.0260 (17)0.0215 (15)0.045 (2)0.0014 (13)0.0013 (15)0.0075 (13)
C220.0243 (17)0.0323 (16)0.0409 (19)0.0047 (14)−0.0020 (15)0.0071 (14)
C310.0286 (17)0.054 (2)0.0482 (19)0.0020 (18)0.0162 (15)0.0070 (19)
C320.079 (3)0.039 (2)0.080 (3)0.006 (2)0.052 (2)0.014 (2)
Cl10.0505 (5)0.0333 (5)0.0291 (4)0.0047 (4)−0.0129 (4)0.0055 (3)
Cl20.0212 (4)0.0391 (5)0.0525 (5)−0.0038 (3)0.0032 (3)−0.0062 (4)
Cl30.0368 (4)0.0253 (4)0.0333 (4)0.0046 (3)0.0050 (4)−0.0061 (3)
Cl40.0323 (4)0.0228 (4)0.0483 (5)−0.0040 (3)0.0031 (4)−0.0032 (3)
Cl50.0298 (4)0.0277 (4)0.0508 (5)0.0096 (3)0.0034 (4)0.0030 (4)
Cl60.0752 (6)0.0395 (4)0.0226 (4)0.0001 (5)−0.0111 (4)0.0019 (4)
O10.0262 (12)0.0389 (12)0.0301 (12)0.0032 (9)0.0032 (10)−0.0136 (9)
O20.0196 (11)0.0235 (10)0.0292 (11)0.0023 (9)0.0018 (8)0.0016 (9)
O30.0219 (10)0.0313 (12)0.0319 (11)0.0030 (9)0.0075 (9)0.0068 (9)
P10.0188 (4)0.0223 (4)0.0207 (4)0.0027 (3)0.0016 (3)−0.0012 (3)
Ru10.01642 (11)0.01575 (10)0.01784 (11)0.00187 (9)0.00057 (9)0.00037 (10)
Sn10.02014 (9)0.02031 (9)0.02040 (9)0.00166 (9)−0.00160 (8)−0.00163 (10)
Sn20.02466 (10)0.01701 (8)0.02010 (9)0.00180 (9)−0.00106 (9)0.00119 (9)

Geometric parameters (Å, °)

C1—C61.406 (4)C11—H11A0.9700
C1—C21.421 (4)C11—H11B0.9700
C1—C71.515 (4)C12—H12A0.9600
C1—Ru12.310 (3)C12—H12B0.9600
C2—C31.400 (4)C12—H12C0.9600
C2—Ru12.242 (3)C21—O21.462 (3)
C2—H20.9300C21—C221.491 (4)
C3—C41.422 (4)C21—H21A0.9700
C3—Ru12.246 (3)C21—H21B0.9700
C3—H30.9300C22—H22A0.9600
C4—C51.398 (4)C22—H22B0.9600
C4—C101.505 (4)C22—H22C0.9600
C4—Ru12.314 (3)C31—O31.461 (3)
C5—C61.407 (4)C31—C321.471 (5)
C5—Ru12.260 (3)C31—H31A0.9700
C5—H50.9300C31—H31B0.9700
C6—Ru12.244 (3)C32—H32A0.9600
C6—H60.9300C32—H32B0.9600
C7—C91.513 (4)C32—H32C0.9600
C7—C81.528 (5)Cl1—Sn12.3679 (8)
C7—H70.9800Cl2—Sn12.3449 (8)
C8—H8A0.9600Cl3—Sn12.3621 (7)
C8—H8B0.9600Cl4—Sn22.3555 (8)
C8—H8C0.9600Cl5—Sn22.3761 (8)
C9—H9A0.9600Cl6—Sn22.3422 (7)
C9—H9B0.9600O1—P11.581 (2)
C9—H9C0.9600O2—P11.595 (2)
C10—H10A0.9600O3—P11.577 (2)
C10—H10B0.9600P1—Ru12.2579 (8)
C10—H10C0.9600Ru1—Sn22.5619 (3)
C11—C121.424 (5)Ru1—Sn12.5669 (3)
C11—O11.454 (4)
C6—C1—C2116.5 (3)H21A—C21—H21B108.2
C6—C1—C7122.9 (3)C21—C22—H22A109.5
C2—C1—C7120.4 (3)C21—C22—H22B109.5
C6—C1—Ru169.48 (16)H22A—C22—H22B109.5
C2—C1—Ru169.24 (15)C21—C22—H22C109.5
C7—C1—Ru1136.4 (2)H22A—C22—H22C109.5
C3—C2—C1121.8 (3)H22B—C22—H22C109.5
C3—C2—Ru171.95 (15)O3—C31—C32108.7 (3)
C1—C2—Ru174.43 (16)O3—C31—H31A109.9
C3—C2—H2119.1C32—C31—H31A109.9
C1—C2—H2119.1O3—C31—H31B109.9
Ru1—C2—H2126.5C32—C31—H31B109.9
C2—C3—C4120.7 (3)H31A—C31—H31B108.3
C2—C3—Ru171.70 (15)C31—C32—H32A109.5
C4—C3—Ru174.46 (16)C31—C32—H32B109.5
C2—C3—H3119.7H32A—C32—H32B109.5
C4—C3—H3119.7C31—C32—H32C109.5
Ru1—C3—H3126.0H32A—C32—H32C109.5
C5—C4—C3117.6 (3)H32B—C32—H32C109.5
C5—C4—C10121.0 (3)C11—O1—P1124.1 (2)
C3—C4—C10121.5 (3)C21—O2—P1119.14 (17)
C5—C4—Ru170.11 (15)C31—O3—P1129.4 (2)
C3—C4—Ru169.24 (15)O3—P1—O1107.53 (12)
C10—C4—Ru1133.19 (19)O3—P1—O2100.96 (10)
C4—C5—C6121.3 (3)O1—P1—O2104.84 (11)
C4—C5—Ru174.31 (16)O3—P1—Ru1111.89 (8)
C6—C5—Ru171.18 (16)O1—P1—Ru1110.96 (8)
C4—C5—H5119.4O2—P1—Ru1119.63 (8)
C6—C5—H5119.4C2—Ru1—C664.79 (10)
Ru1—C5—H5127.2C2—Ru1—C336.35 (9)
C1—C6—C5121.9 (3)C6—Ru1—C376.80 (11)
C1—C6—Ru174.60 (17)C2—Ru1—P196.78 (8)
C5—C6—Ru172.41 (16)C6—Ru1—P1123.48 (8)
C1—C6—H6119.1C3—Ru1—P1120.14 (8)
C5—C6—H6119.1C2—Ru1—C576.43 (10)
Ru1—C6—H6125.8C6—Ru1—C536.41 (10)
C9—C7—C1114.5 (3)C3—Ru1—C564.73 (10)
C9—C7—C8111.3 (3)P1—Ru1—C5159.80 (8)
C1—C7—C8106.9 (3)C2—Ru1—C136.34 (10)
C9—C7—H7108.0C6—Ru1—C135.93 (10)
C1—C7—H7108.0C3—Ru1—C165.51 (11)
C8—C7—H7108.0P1—Ru1—C198.08 (7)
C7—C8—H8A109.5C5—Ru1—C165.09 (10)
C7—C8—H8B109.5C2—Ru1—C465.10 (10)
H8A—C8—H8B109.5C6—Ru1—C464.86 (10)
C7—C8—H8C109.5C3—Ru1—C436.30 (10)
H8A—C8—H8C109.5P1—Ru1—C4155.96 (7)
H8B—C8—H8C109.5C5—Ru1—C435.58 (10)
C7—C9—H9A109.5C1—Ru1—C476.90 (10)
C7—C9—H9B109.5C2—Ru1—Sn2150.01 (8)
H9A—C9—H9B109.5C6—Ru1—Sn288.03 (7)
C7—C9—H9C109.5C3—Ru1—Sn2152.26 (7)
H9A—C9—H9C109.5P1—Ru1—Sn287.608 (19)
H9B—C9—H9C109.5C5—Ru1—Sn289.28 (7)
C4—C10—H10A109.5C1—Ru1—Sn2113.70 (7)
C4—C10—H10B109.5C4—Ru1—Sn2116.07 (6)
H10A—C10—H10B109.5C2—Ru1—Sn1120.77 (8)
C4—C10—H10C109.5C6—Ru1—Sn1149.24 (8)
H10A—C10—H10C109.5C3—Ru1—Sn192.35 (8)
H10B—C10—H10C109.5P1—Ru1—Sn186.94 (2)
C12—C11—O1111.4 (3)C5—Ru1—Sn1112.96 (8)
C12—C11—H11A109.3C1—Ru1—Sn1156.83 (7)
O1—C11—H11A109.3C4—Ru1—Sn189.29 (7)
C12—C11—H11B109.3Sn2—Ru1—Sn189.009 (9)
O1—C11—H11B109.3Cl2—Sn1—Cl396.22 (3)
H11A—C11—H11B108.0Cl2—Sn1—Cl198.76 (3)
C11—C12—H12A109.5Cl3—Sn1—Cl198.67 (3)
C11—C12—H12B109.5Cl2—Sn1—Ru1127.39 (2)
H12A—C12—H12B109.5Cl3—Sn1—Ru1117.06 (2)
C11—C12—H12C109.5Cl1—Sn1—Ru1113.66 (2)
H12A—C12—H12C109.5Cl6—Sn2—Cl4100.24 (3)
H12B—C12—H12C109.5Cl6—Sn2—Cl596.77 (3)
O2—C21—C22109.8 (2)Cl4—Sn2—Cl596.78 (3)
O2—C21—H21A109.7Cl6—Sn2—Ru1118.34 (3)
C22—C21—H21A109.7Cl4—Sn2—Ru1126.73 (2)
O2—C21—H21B109.7Cl5—Sn2—Ru1112.26 (2)
C22—C21—H21B109.7
C6—C1—C2—C33.9 (4)O1—P1—Ru1—Sn1166.88 (9)
C7—C1—C2—C3−171.0 (3)O2—P1—Ru1—Sn144.64 (9)
Ru1—C1—C2—C356.5 (2)C4—C5—Ru1—C265.99 (16)
C6—C1—C2—Ru1−52.6 (2)C6—C5—Ru1—C2−65.73 (17)
C7—C1—C2—Ru1132.5 (3)C4—C5—Ru1—C6131.7 (2)
C1—C2—C3—C40.7 (4)C4—C5—Ru1—C329.33 (15)
Ru1—C2—C3—C458.4 (2)C6—C5—Ru1—C3−102.39 (18)
C1—C2—C3—Ru1−57.7 (3)C4—C5—Ru1—P1138.28 (19)
C2—C3—C4—C5−4.5 (4)C6—C5—Ru1—P16.6 (3)
Ru1—C3—C4—C552.5 (2)C4—C5—Ru1—C1102.70 (17)
C2—C3—C4—C10174.2 (3)C6—C5—Ru1—C1−29.02 (16)
Ru1—C3—C4—C10−128.8 (3)C6—C5—Ru1—C4−131.7 (2)
C2—C3—C4—Ru1−57.0 (2)C4—C5—Ru1—Sn2−140.62 (15)
C3—C4—C5—C63.6 (4)C6—C5—Ru1—Sn287.66 (16)
C10—C4—C5—C6−175.1 (3)C4—C5—Ru1—Sn1−52.00 (16)
Ru1—C4—C5—C655.8 (2)C6—C5—Ru1—Sn1176.28 (14)
C3—C4—C5—Ru1−52.1 (2)C6—C1—Ru1—C2130.6 (3)
C10—C4—C5—Ru1129.2 (2)C7—C1—Ru1—C2−112.7 (4)
C2—C1—C6—C5−4.8 (4)C2—C1—Ru1—C6−130.6 (3)
C7—C1—C6—C5170.0 (3)C7—C1—Ru1—C6116.7 (4)
Ru1—C1—C6—C5−57.3 (2)C6—C1—Ru1—C3101.59 (19)
C2—C1—C6—Ru152.5 (2)C2—C1—Ru1—C3−29.03 (17)
C7—C1—C6—Ru1−132.7 (3)C7—C1—Ru1—C3−141.7 (3)
C4—C5—C6—C11.1 (4)C6—C1—Ru1—P1−138.91 (17)
Ru1—C5—C6—C158.3 (3)C2—C1—Ru1—P190.47 (17)
C4—C5—C6—Ru1−57.2 (2)C7—C1—Ru1—P1−22.2 (3)
C6—C1—C7—C930.2 (4)C6—C1—Ru1—C529.39 (17)
C2—C1—C7—C9−155.2 (3)C2—C1—Ru1—C5−101.24 (19)
Ru1—C1—C7—C9−64.1 (4)C7—C1—Ru1—C5146.1 (3)
C6—C1—C7—C8−93.6 (4)C6—C1—Ru1—C465.03 (18)
C2—C1—C7—C881.0 (3)C2—C1—Ru1—C4−65.59 (18)
Ru1—C1—C7—C8172.1 (2)C7—C1—Ru1—C4−178.3 (3)
C12—C11—O1—P1−172.8 (3)C6—C1—Ru1—Sn2−47.97 (18)
C22—C21—O2—P1−161.1 (2)C2—C1—Ru1—Sn2−178.59 (15)
C32—C31—O3—P1151.6 (3)C7—C1—Ru1—Sn268.7 (3)
C31—O3—P1—O1−80.5 (3)C6—C1—Ru1—Sn1119.9 (2)
C31—O3—P1—O229.0 (3)C2—C1—Ru1—Sn1−10.8 (3)
C31—O3—P1—Ru1157.4 (2)C7—C1—Ru1—Sn1−123.5 (3)
C11—O1—P1—O357.4 (3)C5—C4—Ru1—C2−101.78 (18)
C11—O1—P1—O2−49.4 (3)C3—C4—Ru1—C229.78 (17)
C11—O1—P1—Ru1−179.9 (3)C10—C4—Ru1—C2144.0 (3)
C21—O2—P1—O3178.3 (2)C5—C4—Ru1—C6−29.30 (16)
C21—O2—P1—O1−70.1 (2)C3—C4—Ru1—C6102.27 (18)
C21—O2—P1—Ru155.1 (2)C10—C4—Ru1—C6−143.5 (3)
C3—C2—Ru1—C6−102.3 (2)C5—C4—Ru1—C3−131.6 (2)
C1—C2—Ru1—C629.49 (17)C10—C4—Ru1—C3114.2 (4)
C1—C2—Ru1—C3131.8 (3)C5—C4—Ru1—P1−145.66 (16)
C3—C2—Ru1—P1133.74 (17)C3—C4—Ru1—P1−14.1 (3)
C1—C2—Ru1—P1−94.43 (16)C10—C4—Ru1—P1100.1 (3)
C3—C2—Ru1—C5−65.61 (19)C3—C4—Ru1—C5131.6 (2)
C1—C2—Ru1—C566.22 (18)C10—C4—Ru1—C5−114.2 (3)
C3—C2—Ru1—C1−131.8 (3)C5—C4—Ru1—C1−65.28 (16)
C3—C2—Ru1—C4−29.75 (18)C3—C4—Ru1—C166.29 (17)
C1—C2—Ru1—C4102.09 (19)C10—C4—Ru1—C1−179.5 (3)
C3—C2—Ru1—Sn2−129.25 (16)C5—C4—Ru1—Sn244.93 (17)
C1—C2—Ru1—Sn22.6 (3)C3—C4—Ru1—Sn2176.50 (14)
C3—C2—Ru1—Sn143.3 (2)C10—C4—Ru1—Sn2−69.3 (3)
C1—C2—Ru1—Sn1175.09 (14)C5—C4—Ru1—Sn1133.48 (15)
C1—C6—Ru1—C2−29.81 (17)C3—C4—Ru1—Sn1−94.95 (16)
C5—C6—Ru1—C2101.62 (19)C10—C4—Ru1—Sn119.2 (3)
C1—C6—Ru1—C3−66.31 (18)C2—Ru1—Sn1—Cl2120.51 (9)
C5—C6—Ru1—C365.12 (17)C6—Ru1—Sn1—Cl2−147.70 (15)
C1—C6—Ru1—P151.28 (19)C3—Ru1—Sn1—Cl2144.50 (8)
C5—C6—Ru1—P1−177.29 (13)P1—Ru1—Sn1—Cl224.44 (3)
C1—C6—Ru1—C5−131.4 (3)C5—Ru1—Sn1—Cl2−152.02 (8)
C5—C6—Ru1—C1131.4 (3)C1—Ru1—Sn1—Cl2127.92 (18)
C1—C6—Ru1—C4−102.77 (19)C4—Ru1—Sn1—Cl2−179.31 (7)
C5—C6—Ru1—C428.66 (16)Sn2—Ru1—Sn1—Cl2−63.22 (3)
C1—C6—Ru1—Sn2137.11 (17)C2—Ru1—Sn1—Cl3−116.57 (9)
C5—C6—Ru1—Sn2−91.46 (16)C6—Ru1—Sn1—Cl3−24.78 (15)
C1—C6—Ru1—Sn1−138.14 (15)C3—Ru1—Sn1—Cl3−92.58 (8)
C5—C6—Ru1—Sn1−6.7 (3)P1—Ru1—Sn1—Cl3147.36 (3)
C4—C3—Ru1—C2−130.5 (3)C5—Ru1—Sn1—Cl3−29.10 (8)
C2—C3—Ru1—C665.21 (19)C1—Ru1—Sn1—Cl3−109.16 (18)
C4—C3—Ru1—C6−65.32 (17)C4—Ru1—Sn1—Cl3−56.39 (7)
C2—C3—Ru1—P1−56.1 (2)Sn2—Ru1—Sn1—Cl359.70 (2)
C4—C3—Ru1—P1173.41 (14)C2—Ru1—Sn1—Cl1−2.45 (9)
C2—C3—Ru1—C5101.8 (2)C6—Ru1—Sn1—Cl189.34 (15)
C4—C3—Ru1—C5−28.77 (16)C3—Ru1—Sn1—Cl121.54 (8)
C2—C3—Ru1—C129.02 (18)P1—Ru1—Sn1—Cl1−98.52 (3)
C4—C3—Ru1—C1−101.51 (18)C5—Ru1—Sn1—Cl185.02 (8)
C2—C3—Ru1—C4130.5 (3)C1—Ru1—Sn1—Cl14.96 (18)
C2—C3—Ru1—Sn2123.76 (18)C4—Ru1—Sn1—Cl157.73 (7)
C4—C3—Ru1—Sn2−6.8 (3)Sn2—Ru1—Sn1—Cl1173.82 (2)
C2—C3—Ru1—Sn1−143.89 (17)C2—Ru1—Sn2—Cl6−33.98 (16)
C4—C3—Ru1—Sn185.58 (16)C6—Ru1—Sn2—Cl6−58.17 (8)
O3—P1—Ru1—C2166.35 (11)C3—Ru1—Sn2—Cl6−114.37 (17)
O1—P1—Ru1—C246.25 (12)P1—Ru1—Sn2—Cl665.47 (3)
O2—P1—Ru1—C2−75.99 (11)C5—Ru1—Sn2—Cl6−94.56 (8)
O3—P1—Ru1—C6102.18 (12)C1—Ru1—Sn2—Cl6−32.31 (8)
O1—P1—Ru1—C6−17.93 (13)C4—Ru1—Sn2—Cl6−118.83 (8)
O2—P1—Ru1—C6−140.17 (12)Sn1—Ru1—Sn2—Cl6152.45 (3)
O3—P1—Ru1—C3−163.96 (12)C2—Ru1—Sn2—Cl4−164.87 (15)
O1—P1—Ru1—C375.93 (13)C6—Ru1—Sn2—Cl4170.95 (8)
O2—P1—Ru1—C3−46.31 (13)C3—Ru1—Sn2—Cl4114.74 (17)
O3—P1—Ru1—C597.5 (2)P1—Ru1—Sn2—Cl4−65.42 (3)
O1—P1—Ru1—C5−22.6 (2)C5—Ru1—Sn2—Cl4134.55 (8)
O2—P1—Ru1—C5−144.8 (2)C1—Ru1—Sn2—Cl4−163.20 (8)
O3—P1—Ru1—C1129.72 (11)C4—Ru1—Sn2—Cl4110.28 (8)
O1—P1—Ru1—C19.61 (12)Sn1—Ru1—Sn2—Cl421.56 (3)
O2—P1—Ru1—C1−112.63 (11)C2—Ru1—Sn2—Cl577.46 (15)
O3—P1—Ru1—C4−154.36 (19)C6—Ru1—Sn2—Cl553.27 (8)
O1—P1—Ru1—C485.5 (2)C3—Ru1—Sn2—Cl5−2.94 (17)
O2—P1—Ru1—C4−36.7 (2)P1—Ru1—Sn2—Cl5176.91 (3)
O3—P1—Ru1—Sn216.12 (8)C5—Ru1—Sn2—Cl516.87 (8)
O1—P1—Ru1—Sn2−103.99 (9)C1—Ru1—Sn2—Cl579.13 (8)
O2—P1—Ru1—Sn2133.78 (9)C4—Ru1—Sn2—Cl5−7.39 (8)
O3—P1—Ru1—Sn1−73.01 (9)Sn1—Ru1—Sn2—Cl5−96.11 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2502).

References

  • Alvarez, B., Miguel, D., Pérez-Martínez, J. A. & Riera, V. (1994). J. Organomet. Chem.474, 143–147.
  • Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hodson, E. & Simpson, S. J. (2004). Polyhedron, 23, 2695–2707.
  • Korp, J. D. & Bernal, I. (1981). Inorg. Chem.20, 4065–4069.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe (2000). EXPOSE, CELL and INTEGRATE Stoe & Cie GmbH, Darmstadt, Germany.
  • Therrien, B., Thai, T.-T., Freudenreich, J., Süss-Fink, G., Shapovalov, S. S., Pasynskii, A. A. & Plasseraud, L. (2009). J. Organomet. Chem. In the press.
  • Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography