PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): m1492.
Published online 2009 October 31. doi:  10.1107/S1600536809044997
PMCID: PMC2971131

Di-μ-chlorido-bis­[chlorido(N,N′-dibenzyl­propane-1,2-diamine-κ2 N,N′)copper(II)]

Abstract

In the title complex, [Cu2Cl4(C17H22N2)2], the CuII cation is coordinated by a N,N′-dibenzyl­propane-1,2-diamine ligand and two Cl anions, and a Cl anion from an adjacent mol­ecule further bridges to the CuII cation in the apical position, with a longer Cu—Cl distance of 2.9858 (18) Å, forming a centrosymmetric dimeric complex in which each CuII cation is in a distorted square-pyramidal geometry. Intra­molecular N—H(...)Cl hydrogen bonding is observed in the dimeric complex.

Related literature

For Cu—Cl bond distances, see: Alves et al. (2004 [triangle]); Yang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-m1492-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C17H22N2)2]
  • M r = 777.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-m1492-efi3.jpg
  • a = 21.070 (2) Å
  • b = 13.7377 (17) Å
  • c = 13.2449 (16) Å
  • β = 114.317 (2)°
  • V = 3493.6 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.55 mm−1
  • T = 298 K
  • 0.20 × 0.18 × 0.10 mm

Data collection

  • Siemens SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.746, T max = 0.860
  • 8528 measured reflections
  • 3077 independent reflections
  • 1858 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.104
  • S = 1.06
  • 3077 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809044997/xu2644sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044997/xu2644Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the financial support of the Science Foundation of Huaihai Institute of Technology, China.

supplementary crystallographic information

Comment

Copper(II) complexes bridged by a pair of Cl atoms have been widely investigated in both bioinorganic chemistry and coordination chemistry (Yang et al., 2007; Alves et al., 2004). As a further study of the structures of such complexes, the crystal structure of the title complex is reported here.

The molecular structure of the title complex is illustrated in Fig. 1. The CuII atom are in a distorted square-pyramidal coordination environment (Table 1). The two copper atoms are bridged by a pair of Cl atoms, resulting in complex with centro-symmetric structures. The apical Cu—Cl bond length is 2.9858 (18) Å, whic is longer than 2.737 Å reported by Alves et al. (2004), and 2.852 (1) and 2.971 (2) Å reported by Yang et al. (2007). The N—H···Cl hydrogen boding is present in the crystal structure (Table 2).

Experimental

A solution of N,N'-dibenzylpropane-1,2-diamine (1 mmol) in ethanol (20 ml) and a solution of cupric chloride (1 mmol) in ethanol (10 ml) was mixed, the reaction mixture was stirred for 3 h at 323 K. The solution was then cooled slowly to room temperature and filtered. Blue crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution.

Refinement

H atoms were placed in calculated positions with N—H = 0.91 and C—H = 0.93 to 0.97 Å, and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for the others.

Figures

Fig. 1.
The dimeric complex structure showing the atom-labeling scheme. Displacement ellipsoids are at the 30% probability level. For clarity, H atomes have been omitted [symmetry code: (A) 1/2 - x, 1/2 - y, 1 - z].

Crystal data

[Cu2Cl4(C17H22N2)2]F(000) = 1608
Mr = 777.61Dx = 1.478 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1854 reflections
a = 21.070 (2) Åθ = 2.8–25.3°
b = 13.7377 (17) ŵ = 1.55 mm1
c = 13.2449 (16) ÅT = 298 K
β = 114.317 (2)°Block, blue
V = 3493.6 (7) Å30.20 × 0.18 × 0.10 mm
Z = 4

Data collection

Siemens SMART 1000 CCD area-detector diffractometer3077 independent reflections
Radiation source: fine-focus sealed tube1858 reflections with I > 2σ(I)
graphiteRint = 0.052
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −25→21
Tmin = 0.746, Tmax = 0.860k = −16→16
8528 measured reflectionsl = −10→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0084P)2 + 19.8791P] where P = (Fo2 + 2Fc2)/3
3077 reflections(Δ/σ)max = 0.011
199 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = −0.67 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.19407 (3)0.17462 (5)0.40049 (6)0.0413 (2)
Cl10.10161 (7)0.26002 (11)0.39737 (13)0.0528 (4)
Cl20.23408 (8)0.13479 (12)0.58229 (13)0.0534 (4)
N10.1603 (2)0.1813 (3)0.2330 (4)0.0419 (11)
H10.15580.24580.21600.050*
N20.2780 (2)0.1094 (3)0.3951 (4)0.0414 (12)
H20.31580.13070.45490.050*
C10.2153 (3)0.1442 (4)0.1974 (5)0.0459 (15)
H1A0.20500.07580.17580.055*
C20.2841 (3)0.1484 (4)0.2955 (5)0.0437 (15)
H2A0.31820.11080.28040.052*
H2B0.30010.21540.30870.052*
C30.2159 (4)0.2000 (5)0.0982 (5)0.071 (2)
H3A0.17140.19380.03680.107*
H3B0.25140.17380.07820.107*
H3C0.22540.26750.11730.107*
C40.0901 (3)0.1380 (4)0.1691 (5)0.0471 (15)
H4A0.07820.14470.09050.056*
H4B0.05570.17360.18570.056*
C50.0874 (3)0.0315 (4)0.1964 (5)0.0410 (14)
C60.0856 (3)−0.0402 (5)0.1225 (5)0.0537 (17)
H60.0850−0.02300.05420.064*
C70.0847 (3)−0.1367 (5)0.1488 (7)0.071 (2)
H70.0830−0.18460.09810.085*
C80.0864 (3)−0.1628 (5)0.2511 (7)0.070 (2)
H80.0869−0.22820.26970.084*
C90.0873 (3)−0.0925 (5)0.3243 (6)0.0627 (19)
H90.0877−0.10970.39240.075*
C100.0877 (3)0.0050 (5)0.2968 (5)0.0471 (15)
H100.08820.05280.34680.057*
C110.2785 (3)0.0013 (4)0.4004 (5)0.0507 (16)
H11A0.2485−0.02400.32800.061*
H11B0.2592−0.01890.45210.061*
C120.3497 (3)−0.0430 (4)0.4355 (5)0.0425 (14)
C130.3737 (3)−0.0720 (4)0.3563 (5)0.0493 (16)
H130.3454−0.06410.28130.059*
C140.4395 (3)−0.1126 (4)0.3890 (7)0.0607 (19)
H140.4556−0.13090.33610.073*
C150.4796 (4)−0.1254 (5)0.4962 (8)0.075 (2)
H150.5233−0.15370.51730.090*
C160.4575 (4)−0.0976 (5)0.5764 (6)0.080 (2)
H160.4860−0.10650.65110.096*
C170.3918 (3)−0.0560 (5)0.5438 (5)0.0594 (18)
H170.3766−0.03670.59740.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0354 (4)0.0480 (4)0.0427 (4)0.0035 (3)0.0185 (3)−0.0051 (4)
Cl10.0399 (8)0.0628 (10)0.0571 (10)0.0081 (7)0.0213 (8)−0.0107 (8)
Cl20.0501 (9)0.0667 (11)0.0458 (10)0.0061 (8)0.0221 (8)0.0051 (8)
N10.046 (3)0.038 (3)0.048 (3)0.001 (2)0.025 (2)0.000 (2)
N20.039 (3)0.038 (3)0.046 (3)0.002 (2)0.016 (2)−0.002 (2)
C10.056 (4)0.039 (4)0.050 (4)−0.003 (3)0.029 (3)−0.008 (3)
C20.043 (3)0.037 (4)0.061 (4)0.000 (3)0.032 (3)−0.004 (3)
C30.085 (5)0.083 (5)0.067 (5)0.011 (4)0.052 (4)0.017 (4)
C40.040 (3)0.052 (4)0.043 (4)0.000 (3)0.010 (3)−0.003 (3)
C50.030 (3)0.049 (4)0.038 (4)−0.001 (3)0.008 (3)−0.006 (3)
C60.053 (4)0.060 (5)0.058 (4)−0.007 (3)0.033 (4)−0.009 (4)
C70.068 (5)0.051 (5)0.108 (7)−0.008 (4)0.052 (5)−0.023 (4)
C80.059 (4)0.051 (5)0.107 (7)0.000 (4)0.042 (5)0.009 (5)
C90.059 (4)0.064 (5)0.065 (5)−0.004 (4)0.026 (4)0.012 (4)
C100.039 (3)0.059 (4)0.046 (4)−0.010 (3)0.020 (3)−0.009 (3)
C110.047 (4)0.040 (4)0.070 (5)0.002 (3)0.029 (3)0.004 (3)
C120.043 (3)0.035 (3)0.051 (4)0.004 (3)0.021 (3)0.002 (3)
C130.055 (4)0.042 (4)0.053 (4)0.001 (3)0.025 (3)−0.010 (3)
C140.064 (5)0.044 (4)0.087 (6)0.004 (3)0.044 (5)−0.012 (4)
C150.057 (5)0.060 (5)0.106 (7)0.023 (4)0.032 (5)0.005 (5)
C160.071 (5)0.089 (6)0.059 (5)0.020 (4)0.006 (4)0.016 (4)
C170.066 (5)0.069 (5)0.044 (4)0.012 (4)0.024 (4)0.004 (3)

Geometric parameters (Å, °)

Cu1—N12.034 (4)C6—C71.373 (8)
Cu1—N22.010 (4)C6—H60.9300
Cu1—Cl12.2598 (15)C7—C81.388 (10)
Cu1—Cl22.2663 (17)C7—H70.9300
Cu1—Cl2i2.9858 (18)C8—C91.363 (9)
N1—C41.493 (6)C8—H80.9300
N1—C11.508 (6)C9—C101.388 (8)
N1—H10.9100C9—H90.9300
N2—C21.477 (6)C10—H100.9300
N2—C111.487 (6)C11—C121.504 (7)
N2—H20.9100C11—H11A0.9700
C1—C21.497 (7)C11—H11B0.9700
C1—C31.526 (8)C12—C171.352 (8)
C1—H1A0.9800C12—C131.396 (7)
C2—H2A0.9700C13—C141.389 (8)
C2—H2B0.9700C13—H130.9300
C3—H3A0.9600C14—C151.331 (9)
C3—H3B0.9600C14—H140.9300
C3—H3C0.9600C15—C161.378 (10)
C4—C51.514 (7)C15—H150.9300
C4—H4A0.9700C16—C171.393 (8)
C4—H4B0.9700C16—H160.9300
C5—C101.376 (7)C17—H170.9300
C5—C61.379 (7)
N2—Cu1—N184.19 (18)C5—C4—H4B109.2
N2—Cu1—Cl1174.43 (14)H4A—C4—H4B107.9
N1—Cu1—Cl192.59 (13)C10—C5—C6119.0 (6)
N2—Cu1—Cl289.00 (14)C10—C5—C4120.1 (5)
N1—Cu1—Cl2168.46 (14)C6—C5—C4120.9 (5)
Cl1—Cu1—Cl294.90 (6)C7—C6—C5120.6 (6)
N2—Cu1—Cl2i88.13 (13)C7—C6—H6119.7
N1—Cu1—Cl2i88.99 (13)C5—C6—H6119.7
Cl1—Cu1—Cl2i87.27 (5)C6—C7—C8120.0 (7)
Cl2—Cu1—Cl2i100.11 (5)C6—C7—H7120.0
C4—N1—C1113.5 (4)C8—C7—H7120.0
C4—N1—Cu1114.8 (3)C9—C8—C7119.9 (7)
C1—N1—Cu1110.9 (3)C9—C8—H8120.0
C4—N1—H1105.6C7—C8—H8120.0
C1—N1—H1105.6C8—C9—C10119.8 (7)
Cu1—N1—H1105.6C8—C9—H9120.1
C2—N2—C11113.8 (4)C10—C9—H9120.1
C2—N2—Cu1105.7 (3)C5—C10—C9120.7 (6)
C11—N2—Cu1115.6 (3)C5—C10—H10119.6
C2—N2—H2107.1C9—C10—H10119.6
C11—N2—H2107.1N2—C11—C12113.9 (4)
Cu1—N2—H2107.1N2—C11—H11A108.8
C2—C1—N1108.0 (4)C12—C11—H11A108.8
C2—C1—C3112.2 (5)N2—C11—H11B108.8
N1—C1—C3112.3 (5)C12—C11—H11B108.8
C2—C1—H1A108.0H11A—C11—H11B107.7
N1—C1—H1A108.0C17—C12—C13118.6 (6)
C3—C1—H1A108.0C17—C12—C11121.0 (6)
N2—C2—C1110.6 (4)C13—C12—C11120.4 (6)
N2—C2—H2A109.5C14—C13—C12120.2 (6)
C1—C2—H2A109.5C14—C13—H13119.9
N2—C2—H2B109.5C12—C13—H13119.9
C1—C2—H2B109.5C15—C14—C13120.0 (7)
H2A—C2—H2B108.1C15—C14—H14120.0
C1—C3—H3A109.5C13—C14—H14120.0
C1—C3—H3B109.5C14—C15—C16121.2 (7)
H3A—C3—H3B109.5C14—C15—H15119.4
C1—C3—H3C109.5C16—C15—H15119.4
H3A—C3—H3C109.5C15—C16—C17119.0 (7)
H3B—C3—H3C109.5C15—C16—H16120.5
N1—C4—C5112.0 (4)C17—C16—H16120.5
N1—C4—H4A109.2C12—C17—C16121.1 (6)
C5—C4—H4A109.2C12—C17—H17119.5
N1—C4—H4B109.2C16—C17—H17119.5
N2—Cu1—N1—C4125.7 (4)N1—C4—C5—C1072.6 (6)
Cl1—Cu1—N1—C4−58.9 (3)N1—C4—C5—C6−106.4 (6)
Cl2—Cu1—N1—C471.6 (8)C10—C5—C6—C7−0.5 (9)
Cl2i—Cu1—N1—C4−146.1 (3)C4—C5—C6—C7178.5 (5)
N2—Cu1—N1—C1−4.6 (3)C5—C6—C7—C8−0.8 (10)
Cl1—Cu1—N1—C1170.8 (3)C6—C7—C8—C91.5 (11)
Cl2—Cu1—N1—C1−58.7 (8)C7—C8—C9—C10−1.1 (10)
Cl2i—Cu1—N1—C183.6 (3)C6—C5—C10—C90.9 (9)
N1—Cu1—N2—C228.3 (3)C4—C5—C10—C9−178.1 (5)
Cl2—Cu1—N2—C2−161.0 (3)C8—C9—C10—C5−0.2 (9)
Cl2i—Cu1—N2—C2−60.8 (3)C2—N2—C11—C1277.4 (6)
Cl2—Cu1—N2—C1172.2 (4)Cu1—N2—C11—C12−160.0 (4)
Cl2i—Cu1—N2—C11172.3 (4)N2—C11—C12—C1787.2 (7)
C4—N1—C1—C2−151.2 (4)N2—C11—C12—C13−93.1 (7)
Cu1—N1—C1—C2−20.1 (5)C17—C12—C13—C14−0.4 (9)
C4—N1—C1—C384.5 (6)C11—C12—C13—C14179.9 (5)
Cu1—N1—C1—C3−144.4 (4)C12—C13—C14—C151.0 (9)
C11—N2—C2—C179.6 (5)C13—C14—C15—C16−1.0 (11)
Cu1—N2—C2—C1−48.4 (5)C14—C15—C16—C170.4 (12)
N1—C1—C2—N245.4 (6)C13—C12—C17—C16−0.2 (9)
C3—C1—C2—N2169.7 (5)C11—C12—C17—C16179.5 (6)
C1—N1—C4—C569.9 (6)C15—C16—C17—C120.2 (11)
Cu1—N1—C4—C5−59.2 (5)

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.912.513.386 (5)161

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2644).

References

  • Alves, W. A., Santos, R. H., Paduan-Filho, A., Becerra, C. C., Borin, A. C. & Ferreira, A. M. (2004). Inorg. Chim. Acta, 357, 2269–2278.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yang, S.-P., Han, L.-J., Xia, H.-T., Wang, D.-Q. & Liu, Y.-F. (2007). Acta Cryst. C63, m610–m614. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography