PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2724.
Published online 2009 October 13. doi:  10.1107/S1600536809040227
PMCID: PMC2971127

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2012 July 01; 68(Pt 7): e14    See also: PMC Retraction Policy

1-Phenyl-3-(2,4,6-trimethoxy­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C18H18O4, the dihedral angle between the mean planes of the aromatic rings is 7.39 (6)°. The dihedral angles between the linking C—C=C—C plane and the phenyl and benzene rings are 11.27 (5) and 4.20 (5)°, respectively.

Related literature

For background to the properties and applications of chalcones, see: Satish et al., (1995 [triangle]), Meng et al., (2004 [triangle]), Indira et al., (2002 [triangle]). For the synthesis, see: Migrdichian (1957 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2724-scheme1.jpg

Experimental

Crystal data

  • C18H18O4
  • M r = 298.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2724-efi1.jpg
  • a = 8.8921 (10) Å
  • b = 15.114 (3) Å
  • c = 11.618 (3) Å
  • β = 104.289 (10)°
  • V = 1513.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.12 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.989, T max = 0.995
  • 7545 measured reflections
  • 2581 independent reflections
  • 2037 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.108
  • S = 1.01
  • 2581 reflections
  • 203 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040227/hb5119sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040227/hb5119Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by Liaocheng University (grant No. X071011) and the National Ministry of Science and Technology of China (grant No. 20501011).

supplementary crystallographic information

Comment

In recent years, chalcones consisting of –C=C—C(O)- group have been widely researched due to their interesting properties, such as photoreaction (Satish et al., 1995), biological activity (Meng et al., 2004) and non-linear optical properties (Indira et al., 2002). Herein, we report the synthesis and structure of the title compound.

As shown in figure 1, the C(1)—C(6) phenyl ring is taken as plane 1, another C(10)—C(15) one as plane 2 and the central C(7)—C(8)=C(9)—C(10) as plane 3, with the dihedral angles between them, A12, A13 and A23, of 7.39, 11.27 and 4.20 °, respectively, showing the two phenyl rings are rotated oppositely with respect to the central part of plane 3. The torsional angle C(7)—C(8)=C(9)—C(10) is 177.5 ° and the phenone O(1) atom deviates from plane 3 by 0.13 Å, suggesting C=O is not coplanar with this plane.

Experimental

The synthesis of the title compound was according to the related literature (Migrdichian et al., (1957)). An aqueous solution of sodium hydroxide (10%, 10 ml) was added to the mixture of acetophenone (0.02 mol) and 2,4,6-trimethoxyphenylaldehyde (0.02 mol) in 95% ethanol (30 ml). The reaction mixture was stirred at room temperature for 5 h, yielding light yellow solid neutralized by hydrochloric acid (10%) and water. Colourless blocks of (I) were obtained by slow evaporation from dry ethanol. Elemental Analysis. Calc. for C18H18O4: C 72.41, H 6.03%; Found: C 72.38, H 6.01%.

Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
A view of the structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.

Crystal data

C18H18O4F(000) = 632
Mr = 298.32Dx = 1.310 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2581 reflections
a = 8.8921 (10) Åθ = 2.4–25.0°
b = 15.114 (3) ŵ = 0.09 mm1
c = 11.618 (3) ÅT = 293 K
β = 104.289 (10)°Block, colourless
V = 1513.1 (5) Å30.12 × 0.10 × 0.05 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2581 independent reflections
Radiation source: fine-focus sealed tube2037 reflections with I > 2σ(I)
graphiteRint = 0.037
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→10
Tmin = 0.989, Tmax = 0.995k = −17→16
7545 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.108w = 1/[σ2(Fo2) + (0.0725P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2581 reflectionsΔρmax = 0.13 e Å3
203 parametersΔρmin = −0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.329 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.14370 (15)0.24856 (10)0.22992 (12)0.0564 (4)
H1−0.15110.21410.29460.068*
C2−0.25419 (15)0.31225 (11)0.18742 (14)0.0645 (4)
H2−0.33560.32000.22360.077*
C3−0.24594 (16)0.36410 (11)0.09297 (14)0.0653 (4)
H3−0.32020.40760.06590.078*
C4−0.12883 (17)0.35171 (10)0.03889 (13)0.0654 (4)
H4−0.12280.3865−0.02580.078*
C5−0.01819 (15)0.28718 (9)0.08018 (12)0.0550 (4)
H50.06070.27840.04170.066*
C6−0.02275 (13)0.23540 (9)0.17773 (10)0.0463 (3)
C70.09868 (14)0.16867 (9)0.23099 (11)0.0505 (3)
C80.22237 (14)0.15192 (9)0.17349 (11)0.0505 (4)
H80.21820.17770.10010.061*
C90.34224 (14)0.10042 (8)0.22297 (10)0.0452 (3)
H90.33610.07430.29410.054*
C100.47889 (13)0.07856 (8)0.18512 (10)0.0405 (3)
C110.51540 (14)0.11331 (8)0.08352 (10)0.0431 (3)
C120.64572 (14)0.08891 (8)0.05099 (10)0.0474 (3)
H120.66670.1122−0.01750.057*
C130.74710 (13)0.02941 (8)0.11969 (11)0.0460 (3)
C140.72008 (13)−0.00523 (8)0.22196 (10)0.0457 (3)
H140.7900−0.04430.26880.055*
C150.58727 (13)0.01938 (8)0.25291 (10)0.0422 (3)
C160.65272 (16)−0.07565 (10)0.42236 (11)0.0592 (4)
H16A0.6572−0.12750.37570.089*
H16B0.6140−0.09130.48980.089*
H16C0.7548−0.05090.44910.089*
C170.44269 (17)0.21138 (9)−0.08152 (12)0.0616 (4)
H17A0.53980.2424−0.06020.092*
H17B0.36100.2521−0.11570.092*
H17C0.44790.1661−0.13830.092*
C180.97451 (18)−0.05696 (11)0.14022 (14)0.0733 (5)
H18A1.0180−0.03920.22090.110*
H18B1.0565−0.06570.10090.110*
H18C0.9181−0.11120.13930.110*
O10.55255 (10)−0.01251 (6)0.35230 (8)0.0566 (3)
O20.41252 (10)0.17263 (6)0.02034 (7)0.0574 (3)
O30.87224 (10)0.01005 (7)0.08024 (8)0.0639 (3)
O40.09522 (11)0.13301 (8)0.32405 (9)0.0787 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0473 (7)0.0676 (9)0.0567 (8)−0.0009 (6)0.0171 (6)−0.0055 (7)
C20.0418 (7)0.0773 (10)0.0776 (10)0.0068 (7)0.0208 (7)−0.0089 (8)
C30.0514 (8)0.0694 (10)0.0725 (10)0.0144 (7)0.0104 (7)−0.0030 (8)
C40.0649 (9)0.0683 (9)0.0623 (9)0.0123 (7)0.0144 (7)0.0046 (7)
C50.0487 (7)0.0644 (9)0.0541 (8)0.0055 (6)0.0166 (6)−0.0045 (6)
C60.0375 (6)0.0555 (7)0.0446 (7)−0.0005 (5)0.0076 (5)−0.0105 (6)
C70.0428 (7)0.0661 (8)0.0415 (7)0.0028 (6)0.0083 (5)−0.0058 (6)
C80.0442 (7)0.0645 (8)0.0422 (7)0.0074 (6)0.0093 (5)−0.0014 (6)
C90.0439 (7)0.0519 (7)0.0395 (6)0.0012 (6)0.0097 (5)−0.0049 (5)
C100.0392 (6)0.0437 (7)0.0379 (6)0.0010 (5)0.0081 (5)−0.0025 (5)
C110.0436 (7)0.0430 (7)0.0402 (6)0.0021 (5)0.0059 (5)0.0008 (5)
C120.0513 (7)0.0519 (7)0.0413 (7)0.0007 (6)0.0158 (6)0.0063 (5)
C130.0420 (6)0.0506 (7)0.0484 (7)0.0031 (5)0.0169 (5)0.0025 (6)
C140.0428 (7)0.0478 (7)0.0475 (7)0.0064 (5)0.0131 (6)0.0073 (5)
C150.0428 (7)0.0467 (7)0.0380 (6)−0.0013 (5)0.0115 (5)0.0022 (5)
C160.0574 (8)0.0705 (9)0.0505 (8)0.0117 (7)0.0149 (6)0.0197 (7)
C170.0695 (9)0.0633 (9)0.0503 (8)0.0047 (7)0.0117 (7)0.0161 (6)
C180.0631 (9)0.0874 (11)0.0802 (10)0.0323 (8)0.0385 (8)0.0277 (9)
O10.0515 (5)0.0748 (6)0.0479 (5)0.0156 (5)0.0209 (4)0.0201 (4)
O20.0562 (6)0.0661 (6)0.0504 (5)0.0162 (4)0.0140 (4)0.0177 (4)
O30.0564 (6)0.0799 (7)0.0647 (6)0.0207 (5)0.0328 (5)0.0226 (5)
O40.0661 (7)0.1169 (9)0.0584 (6)0.0289 (6)0.0255 (5)0.0239 (6)

Geometric parameters (Å, °)

C1—C61.3733 (18)C11—C121.3556 (17)
C1—C21.3770 (19)C12—C131.3797 (17)
C1—H10.9300C12—H120.9300
C2—C31.365 (2)C13—O31.3362 (14)
C2—H20.9300C13—C141.3727 (17)
C3—C41.355 (2)C14—C151.3682 (15)
C3—H30.9300C14—H140.9300
C4—C51.3843 (19)C15—O11.3554 (14)
C4—H40.9300C16—O11.4172 (15)
C5—C61.3860 (18)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.4954 (18)C16—H16C0.9600
C7—O41.2153 (16)C17—O21.4044 (15)
C7—C81.4431 (17)C17—H17A0.9600
C8—C91.3305 (17)C17—H17B0.9600
C8—H80.9300C17—H17C0.9600
C9—C101.4292 (16)C18—O31.4232 (16)
C9—H90.9300C18—H18A0.9600
C10—C111.4014 (16)C18—H18B0.9600
C10—C151.4051 (16)C18—H18C0.9600
C11—O21.3594 (14)
C6—C1—C2120.67 (13)C11—C12—C13119.83 (11)
C6—C1—H1119.7C11—C12—H12120.1
C2—C1—H1119.7C13—C12—H12120.1
C3—C2—C1120.96 (13)O3—C13—C14123.49 (11)
C3—C2—H2119.5O3—C13—C12115.14 (11)
C1—C2—H2119.5C14—C13—C12121.36 (11)
C4—C3—C2119.55 (14)C15—C14—C13118.08 (11)
C4—C3—H3120.2C15—C14—H14121.0
C2—C3—H3120.2C13—C14—H14121.0
C3—C4—C5119.89 (14)O1—C15—C14121.34 (11)
C3—C4—H4120.1O1—C15—C10115.78 (10)
C5—C4—H4120.1C14—C15—C10122.88 (10)
C4—C5—C6121.29 (12)O1—C16—H16A109.5
C4—C5—H5119.4O1—C16—H16B109.5
C6—C5—H5119.4H16A—C16—H16B109.5
C1—C6—C5117.61 (12)O1—C16—H16C109.5
C1—C6—C7118.63 (12)H16A—C16—H16C109.5
C5—C6—C7123.73 (11)H16B—C16—H16C109.5
O4—C7—C8121.57 (12)O2—C17—H17A109.5
O4—C7—C6119.54 (12)O2—C17—H17B109.5
C8—C7—C6118.80 (11)H17A—C17—H17B109.5
C9—C8—C7121.57 (12)O2—C17—H17C109.5
C9—C8—H8119.2H17A—C17—H17C109.5
C7—C8—H8119.2H17B—C17—H17C109.5
C8—C9—C10130.82 (12)O3—C18—H18A109.5
C8—C9—H9114.6O3—C18—H18B109.5
C10—C9—H9114.6H18A—C18—H18B109.5
C11—C10—C15116.18 (10)O3—C18—H18C109.5
C11—C10—C9124.32 (11)H18A—C18—H18C109.5
C15—C10—C9119.49 (10)H18B—C18—H18C109.5
O2—C11—C12122.44 (11)C15—O1—C16119.06 (9)
O2—C11—C10115.92 (10)C11—O2—C17119.14 (10)
C12—C11—C10121.64 (11)C13—O3—C18118.25 (10)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5119).

References

  • Bruker (2005). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Indira, J., Prakash Karat, P. & Sarojini, B. K. J. (2002). J. Cryst. Growth, 242, 209–214.
  • Meng, C. Q., Zheng, X. S., Ni, L., Ye, Z. H., Simpson, J. E., Worsencroft, K. J., Hotema, M. R., Weingarten, J. W., Gilmore, J. M., Hoong, L. K., Hill, R. R., Marino, E. M., Suen, K. L., Kunsch, C., Wasserman, M. A. & Sikorski, J. A. (2004). Bioorg. Med. Chem. Lett., 14, 1513–1517. [PubMed]
  • Migrdichian, V. (1957). Org. Synth.1, 171–173.
  • Satish, G. B., Kaliyamoorthy, P. Z. D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 325–330.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography