PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 November 1; 65(Pt 11): o2865.
Published online 2009 October 28. doi:  10.1107/S1600536809043657
PMCID: PMC2971121

4,6-Bis[5-methyl-3-(trifluoro­meth­yl)pyrazol-1-yl]pyrimidine

Abstract

The complete mol­ecule of the the title compound, C14H10F6N6, is generated by crystallographic twofold symmetry, with two C atoms lying on the roatation axis. The dihedral angle between the central and peripheral rings is 25.97 (8)°.

Related literature

For background to fluorine-containing heterocycles and their properties, see: Krishnaiah & Narsaiah (2002 [triangle]); Ohno et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-o2865-scheme1.jpg

Experimental

Crystal data

  • C14H10F6N6
  • M r = 376.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-o2865-efi1.jpg
  • a = 8.5387 (14) Å
  • b = 16.110 (6) Å
  • c = 11.022 (5) Å
  • β = 99.295 (5)°
  • V = 1496.2 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.16 mm−1
  • T = 173 K
  • 0.41 × 0.36 × 0.26 mm

Data collection

  • Rigaku Saturn724+ CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008 [triangle]) T min = 0.938, T max = 0.960
  • 8915 measured reflections
  • 1706 independent reflections
  • 1678 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.100
  • S = 1.19
  • 1706 reflections
  • 120 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2008 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043657/hb5156sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043657/hb5156Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (No. 20070420444), the Major State Basic Research Development program of China (No. 2010CB126106 and No. 2006CB101907), and the 863 high-tech key project of China (2006AA10A203).

supplementary crystallographic information

Comment

Strategically positioned fluorine in heterocyclic compounds, especially those containing trifluromethyl groups plays an important role in medicines and agrochemicals (e.g. Krishnaiah & Narsaiah, 2002). Specifically, the fluorinated pyrazoles have been shown to possess high biological activities (e.g. Ohno et al. 2004) as herbicides, fungicides, insecticides, analgesics, antipyretics and antiinflammatories. Pyrazolopyrimidine and related fuesd heterocycles are of interest as potential bioactive molecules. Recently, the new title compound (I) was synthesized in our group with high herbicidal activity. The crystal structure of the compound (I) is shown in Fig. 1.

Experimental

The title compound (0.1 g) was dissolved in anhydrous methanol (20 ml) at room temperature. Colourless blocks of (I) were obtained through slow evaporation after two weeks.

Refinement

All the hydrogen atoms were placed in idealised positions with C—H = 0.93–0.98Å and Uiso (H) = 1.2–1.5Uep (C).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids and atom-numbering scheme.

Crystal data

C14H10F6N6F(000) = 760
Mr = 376.28Dx = 1.670 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 648 reflections
a = 8.5387 (14) Åθ = 2.2–27.5°
b = 16.110 (6) ŵ = 0.16 mm1
c = 11.022 (5) ÅT = 173 K
β = 99.295 (5)°Block, colorless
V = 1496.2 (9) Å30.41 × 0.36 × 0.26 mm
Z = 4

Data collection

Rigaku Saturn724+ CCD diffractometer1706 independent reflections
Radiation source: sealed tube1678 reflections with I > 2σ(I)
graphiteRint = 0.033
ω scans at fixed χ = 45°θmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008)h = −11→11
Tmin = 0.938, Tmax = 0.960k = −20→20
8915 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.19w = 1/[σ2(Fo2) + (0.0291P)2 + 1.4916P] where P = (Fo2 + 2Fc2)/3
1706 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.53252 (12)0.61885 (7)0.61601 (11)0.0484 (3)
F20.39212 (17)0.66320 (8)0.45033 (11)0.0610 (4)
F30.31154 (14)0.67824 (7)0.62363 (12)0.0544 (3)
N10.22004 (15)0.52452 (8)0.43231 (12)0.0284 (3)
N20.16127 (15)0.44751 (8)0.45125 (11)0.0269 (3)
N30.07685 (16)0.32384 (8)0.35077 (13)0.0311 (3)
C10.30268 (18)0.54413 (10)0.54059 (14)0.0288 (3)
C20.29725 (19)0.48203 (10)0.62924 (14)0.0310 (4)
H2A0.34700.48290.71280.037*
C30.20539 (18)0.42006 (10)0.57018 (14)0.0289 (3)
C40.1508 (2)0.34123 (11)0.62036 (16)0.0369 (4)
H4A0.17500.34230.71030.055*
H4B0.20540.29420.58920.055*
H4C0.03600.33530.59450.055*
C50.07580 (17)0.40647 (10)0.34787 (13)0.0266 (3)
C60.00000.45258 (14)0.25000.0265 (4)
H6A0.00000.51150.25000.032*
C70.00000.28736 (15)0.25000.0331 (5)
H7A0.00000.22840.25000.040*
C80.3840 (2)0.62608 (11)0.55639 (15)0.0342 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0298 (5)0.0524 (7)0.0594 (7)−0.0036 (5)−0.0038 (5)−0.0096 (5)
F20.0863 (10)0.0544 (7)0.0384 (6)−0.0291 (7)−0.0011 (6)0.0066 (5)
F30.0461 (7)0.0431 (6)0.0754 (9)0.0017 (5)0.0146 (6)−0.0206 (6)
N10.0275 (6)0.0310 (7)0.0259 (6)−0.0002 (5)0.0011 (5)−0.0002 (5)
N20.0254 (6)0.0302 (7)0.0242 (6)0.0013 (5)0.0014 (5)0.0006 (5)
N30.0300 (7)0.0313 (7)0.0311 (7)0.0019 (5)0.0023 (5)0.0010 (6)
C10.0251 (7)0.0353 (8)0.0256 (7)0.0034 (6)0.0027 (6)−0.0028 (6)
C20.0288 (8)0.0393 (9)0.0239 (7)0.0063 (6)0.0013 (6)−0.0011 (6)
C30.0270 (7)0.0350 (8)0.0244 (7)0.0070 (6)0.0038 (6)0.0024 (6)
C40.0432 (10)0.0373 (9)0.0296 (8)0.0035 (7)0.0044 (7)0.0062 (7)
C50.0223 (7)0.0324 (8)0.0252 (7)0.0012 (6)0.0043 (6)−0.0016 (6)
C60.0236 (10)0.0292 (11)0.0262 (10)0.0000.0028 (8)0.000
C70.0341 (12)0.0291 (11)0.0352 (12)0.0000.0032 (9)0.000
C80.0318 (8)0.0394 (9)0.0304 (8)0.0008 (7)0.0014 (6)−0.0031 (7)

Geometric parameters (Å, °)

F1—C81.3359 (19)C2—C31.368 (2)
F2—C81.325 (2)C2—H2A0.9500
F3—C81.336 (2)C3—C41.490 (2)
N1—C11.323 (2)C4—H4A0.9800
N1—N21.3668 (19)C4—H4B0.9800
N2—C31.377 (2)C4—H4C0.9800
N2—C51.414 (2)C5—C61.3815 (19)
N3—C51.331 (2)C6—C5i1.3815 (19)
N3—C71.3319 (17)C6—H6A0.9500
C1—C21.404 (2)C7—N3i1.3319 (17)
C1—C81.489 (2)C7—H7A0.9500
C1—N1—N2103.56 (13)H4A—C4—H4C109.5
N1—N2—C3112.71 (12)H4B—C4—H4C109.5
N1—N2—C5117.12 (12)N3—C5—C6123.83 (15)
C3—N2—C5130.02 (14)N3—C5—N2116.59 (13)
C5—N3—C7114.87 (15)C6—C5—N2119.57 (15)
N1—C1—C2112.63 (15)C5i—C6—C5114.9 (2)
N1—C1—C8119.21 (14)C5i—C6—H6A122.5
C2—C1—C8128.13 (15)C5—C6—H6A122.5
C3—C2—C1105.64 (14)N3—C7—N3i127.6 (2)
C3—C2—H2A127.2N3—C7—H7A116.2
C1—C2—H2A127.2N3i—C7—H7A116.2
C2—C3—N2105.44 (14)F2—C8—F1107.01 (15)
C2—C3—C4129.45 (15)F2—C8—F3107.49 (16)
N2—C3—C4124.98 (15)F1—C8—F3105.65 (14)
C3—C4—H4A109.5F2—C8—C1112.77 (14)
C3—C4—H4B109.5F1—C8—C1111.59 (14)
H4A—C4—H4B109.5F3—C8—C1111.93 (14)
C3—C4—H4C109.5
C1—N1—N2—C30.68 (16)N1—N2—C5—N3152.46 (14)
C1—N1—N2—C5−175.36 (13)C3—N2—C5—N3−22.8 (2)
N2—N1—C1—C2−0.63 (17)N1—N2—C5—C6−26.16 (18)
N2—N1—C1—C8−179.10 (13)C3—N2—C5—C6158.62 (13)
N1—C1—C2—C30.37 (18)N3—C5—C6—C5i−0.48 (11)
C8—C1—C2—C3178.67 (15)N2—C5—C6—C5i178.03 (15)
C1—C2—C3—N20.07 (17)C5—N3—C7—N3i−0.43 (10)
C1—C2—C3—C4−175.86 (16)N1—C1—C8—F2−14.0 (2)
N1—N2—C3—C2−0.47 (17)C2—C1—C8—F2167.76 (16)
C5—N2—C3—C2174.92 (14)N1—C1—C8—F1−134.52 (15)
N1—N2—C3—C4175.69 (14)C2—C1—C8—F147.3 (2)
C5—N2—C3—C4−8.9 (3)N1—C1—C8—F3107.31 (17)
C7—N3—C5—C60.9 (2)C2—C1—C8—F3−70.9 (2)
C7—N3—C5—N2−177.66 (11)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5156).

References

  • Krishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem.115, 9–11.
  • Ohno, R., Watanabe, A., Nagaoka, M., Ueda, T., Sakurai, H., Hori, M. & Hirai, K. (2004). J. Pestic. Sci.29, 15–26.
  • Rigaku (2008). CrystalClear Rigaku Corporation, Toyko, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography